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ABSTRACT 

The change point of a functluu is defined Co be Che 

point (assumed unique) that minimi.uä or maximizes Che 

function. 

Fixt-u and narrow "window'' CKUnKitors are proposed and 

studied for Che change polnC of Che generalized failure rate 

f (x) 
function r(x) ■ ^j—l  where F and G are distribu- 

glG"1?^)] 

Cions with densicles  f and g , respectively.  For a given 

G and an unknown F , Che change point is estimated by (1) 

escimating r(x) , relaxing Che assmpclon of complete 

sample; and (2) minimizing Che esClmaCor of r(x)  over 

x c fi  wich fi  a grid on  (-00,0,,) . The esdmacors are n       n   e       N » ' 

shown Co be consistent and their asymptotic distributions 

are derived using theorems on the convergence of distribu- 

tions of stochastic processes. When G is the uniform 

distribution on  [0,1] , estimation of the mode of a density 

falls out as a special case; and, by virtue of (1) and (2), 

the asymptotic results are shown to hold in this case under 

conditions more general than assumed by Chernoff (1964) and 

Venter (1967).  Estimators have also been proposed when 

r(x)  is known to be U-shaped. 

A computer program has been written in FORTRAN IV to 

obtain estimates of the change point of density and failure 

rate functions.  Several numerical investigations have 

indicated the superiority of a particular estimator in the 

case of small samples. 
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CHAPTER I 

INTRODUCTION 

1. Literature  Review 

Estimators  for the mode of a probability density function have been 

considered by Chernoff [5], Parzen [12] and Venter [18],    In each case, It 

hab been assumed that  there Is a sample of    n    Independent observations 

from a distribution    F , the mode of whose density we wish to estimate. 

Consistency and asymptotic distribution of the estimators have been dealt 

with in each of the above papers.    The companion problems of estimating 

probability density and failure rate  functions have been considered by many 

authors.    See,   for example, Bray, Crawford and Proschan [4], Parzen [12], 

Rao [13].    Estimation of the monotone generalized failure rate function 

(defined in Section 3) has recently been dealt with by Barlow and van Zwet 

[1,2], which subsumes the cases of estimating monotone density and failure 

rate functions. 

2. The Estimation Problem 

Definition; 

The change point  of a function is the point (assumed unique) at which 

the function attains its global minimum (or its global maximum). 

This thesis formulates estimation of the mode of a probability density 

function and of the point which minimizes a failure rate function, as a 

special case of a larger class of problems viz. estimation of the change 

point of the generalized failure rate function. The second generalization 

is the choice of grid points for observing and/or analyzing the data. 

Whereas both Chernoff and Venter assume a complete sample and use a grid 

based on order statistics for analyzing the data, it is shown that the 



asymptotic results are not changed by choosing wider grids - an important 

fact  for implementing the estimation procedure in real life. 

3.     Notation and Preliminaries 

Let    F   be the unknown distribution function, with density    f ,  from 

which the sample of observations is drawn and    G    be a known distribution 

function with density    g  .     Let    s.   , s_    be the left and right end points 

of the support of    F . 

We define two transformations    $..(x)    and    $F(y)    as follows: 

F'^y) 
(3.1)        ♦pU) - G'Vx)   ; ^(y) -     I gtG^FOOldu 0 <. y <. 1 

Then 

d*B00 „„x * „ro-l «tG xF(x)] 

y-F(x) £(x) dX g[G lFM]      dy    F 

when the derivatives exist. 

Definition; 

f (x) r(x) r-^    Is called the generalized failure rate function. 
g[G"iF(x)] 

The following two important cases are worth noting. Let 

(I) G be the uniform distribution on [0,1] . Then r(x) - f(x) . 

(II) G be the exponential distribution on [0,») with mean 1 . Then 

f(x) 
r(x) - . _ p/x\ * the failure rate function of F . 

If F  is the empirical distribution function for F , based on a 
n 

sample of size n , the natural estimators of 4>F(x) and ^„(y) are given by 



.,-3 •   - 

(3.:)       *„   (x)  « C~l¥  (x)   ;  ^   (y)   «     f gfc'1?  {u>ldu   . 

Sl 

When v - — ard X,, .... X  art* the ordct statlsticü fron F n In 

i-i  r 

»—(Generalized  totsk  ?.ine ou      at statisticj   . 

Of s pet-ial interest art; estifiiators b?iicd on grids with wider spacings 

than thos J provided by order staristj-cs.    We,  therefore, define an analogue 

of the empirical distribution i.or more general grids.    Let    iw      \ be a 
I   1'n|i=0 

subdivisio i of    (/-'• «)    and define 

n n    i,n i,n — l,n+i 

Remark 3.1; 

^    ivj     l"        becomes dense on the support of    F    with probability 1, 
{Wi'n}i=o 

it can be proved along the lines of the proof of the Glivenko-Cantelli 

theorem that 

sup     |Fn(x) (3.5) P      sup     |F (x)  - F(x)|  - 0 = 1 

Note that  the grid    iw      ) (observer's grid)   is the grid used in 
( i,nJi=0 

observing the data and, in general, need not be the same as the set 

Ü    = iutj     I    (analyzer's grid)   used in analyzing the data.  With F 
n  I i'nli-0 n 



A"1 

Fn (y) 

defined in (3.4), <fr A*)  - G"1F*(X) and * .(y) - f      g|G'1F*(u) |du 
F n F i, L       n     J 

n n 1 

are well defined and estimate    4i-(x)    and    ^„(y)    respectively. 
r F 

Within parenthesis is given the meaning of abbreviations used through- 

out this thesis. 

a.s. (almost sure, almost surely) 

w.p.l. (with probability 1) 

[ ] ([a] is the largest integer less than or equal to a) 

= (is defined to be) 

■* * (almost sure convergence or convergence w.p.l.) 

* (convergence in probability) 

* (convergence in distribution) 

0 (•)  (X = 0 (x ) if X /x  is bounded in probability, i.e., if 
p     n   p n      n n 

for each e > 0 , there is an M  and an N 9 
e e 

P{|X   |>Mx}<eVn>N     .) 1 n1 —   e n   — —   e 

o  (•)     (X    = o  (x )    if     |X   l/x    ^0    as    n -► » ,  i.e., if pn       pn 'n'n 

P{ Ix I > EX } -*• 0 as n -► » for each E > 0 .) 
n ■—  n 

| j  (Indicates end of a proof). 

A final note on notation: all equations, lemmas, theorems etc. are 

numbered on their respective scales. The number referring to the chapter 

is dropped if the reference is made within the chapter. 

A. Overview of Chapters 

Some useful convergence properties of: 

(I) a class of estimators for density functions based on F , and 
n 

(II) the estimators (}> ^ and $ ^ 
F       F 
n       n 



as well as conditions for the consistency of an estimator of the change 

point of a function are given in Chapter II. These results, besides being 

used in subsequent chapter^, an; interesting in their own right and useful 

in solving allied problems.  See references [1], [2]. Also given are some 

known results on the weak convergence of probability measures. 

The motivation for the proposed estimators stems from (3.2).  In the 

derivation of asymptotic distributions, we place the following restrictions 

on the observer's and analyzer's grids: 

(i)  fi n = {Wi.n}i= 

(ii)  u 
-a 

0 (en )  for ail i and c > 0 , a > 0 . 
i+l,n   i,n   p 

The grid Ü      is said to be "wide" for 0 < a < 1/3 and "narrow" for 

1/3 .1 u .1 1 • Of special interest will be the rate at which the grid spacings 

are required to converge to zero. 

In Chapters III and IV, we confine ourselves to estimators based on the 

0 transformation. The value of x , not necessarily unique, which minimizes 

F 
^(x + a) - * A(x - a)1 

F 
n n     J 

among all x G ft  is said to estimate the 
n 

change point.  The interval "2a" is called a uindow  and the estimator, a 

window estimator.     When a is fixed, the estimator, termed fixed wiy:Jow 

estimator, is considered in Chapter III and when a -*■ 0 as n -* 00 , the 

corresponding estimator, termed narrow window  estimator, is considered in 

Chapter IV.  Consistency and asymptotic distribution are dealt with in 

each case. 

Estimators derived from the $ transformation are considered in 

Chapters V and VI.  The value of x , not necessarily unique, which maximizes 

* a-lF (x) + b| - $   . (F (X) - b)   among all x s Q      is said to estimate 
* \ n /    * \ n      /                n 

r r 
n n         _ 

the change point.  The case of fixed b  is considered in Chapter V and 



b ->■ 0 as n -► Q0 in Chapter VI. It is Interesting to note that to Insure 

the existence of the asymptotic distributions, if the window is fixed (narrow), 

the grid Ü      is required to be narrow (wide). A comparison of the two 

narrow window estimators is made at the end of Chapter VI. 

In conclusion, other estimators of the change point as well as a dis- 

cussion of computational aspects are given in Chapter VII. Bray, Crawford 

and Proschan [A] deal with the maximum likelihood estimation of a U-shaped 

failure rate function and, as a by-product, estimate the change point. 

Analogously, the U-shaped generalized failure rate function may be estimated 

by methods similar to Barlow and van Zwet [1,2] and hence estimate the 

change point. The development of the estimation problem in this thesis 

presents a natural way of obtaining consistent estimates of the change point. 

Some recommendations regarding the choice of the windows and the grid 

iü  , and results of Monte Carlo investigations are included at the end of 
n 

Chapter VII. 

A computer program has been written in FORTRAN IV to obtain the narrow 

window estimates of the change point. A discussion of the program, along 

with its listing, is given in the Appendix. 



CHAPTER II 

SOME CONVERGENCE THEOREMS 

1. A Class of Estimators for Density Functions 

Let )w.  \   be a grid which becomes dense on the support of F 
\  ^/i-O 

w.p.l. as n -*■ » . We saw in Remark 1.3.1 that F (x) , defined by 

F (x) - F (w. )      w.  < x < w.  .. 
n     n i,n        i,n —    i,n+l 

tends to F(x) w.p.l. uniformly in x , where F (x)  is the empirical 

distribution function for F(x) . 

To estimate f(x) , the density of F(x) , we consider a statistic of 

the form: 

x 

where K(x)  is a certain density function and h -► 0 as n -»■ 00 . Such 

* 
estimates have been studied by Nadaraya [11] and Parzen [12] when F H F 

Theorem 1.1; 

Let  the  following assumptions hold: 

(1.A1)    K(x)     is a function of bounded variation  (with bound    y)   . 

(1.A2)    f(x)     is uniformly continuous. 

(1.A3)       I    e < co    for every positive    y   . 
n-1 

(1.A4)    w...  n - w.      - o(h)     for all    i  . 
1+1 ,n        i,n 

Then 



8 

(1.2) Tlim      sup     |f*(x) - f(x)|  - o] 
[tl-KJO     _0O<X<0O '' J 

1       . 

Proof: 

Let    fn(x) - i   |    K(^)dFn(„) 

sup     |f  (x)  - f   (x) I  «      sup 
-oo<x<» _oo<x<<n K j   KM<<"' 

GO 

£     8UP 
-oo<x<" 

eo 

i  J |r>-Va)| |^)| 

<      sup     |F*(x)  - Fn(x)|^ 
—0><X<!» 

< sup 
i 

Fn(W<+1    n)    "   Fn(W<    n
) n    ITI,n n    i ,n 1 *—«i 

0    w.p.l.  by  (1.A4)   and Theorem 1,   [ll]. 

3   S From Nadaraya  [11],     f   (x)    ■* '  f(x)    uniformly in    x  .    Hence 

f  (x)    ■+■ *   f (x)    uniformly in    x .   | | 

2.    Properties of the    $ ^    and    * ^    Transformations 

Theorem 2.1: 

If the support of G is an interval, then 

(2.1) fU *(x) - $F(x)l ^ ol - 1 for each x 



In addition,  if the support of    G    Is bounded, then 

(2.2) 

Proof: 

sup    ]$ a 
.oo<x<et> F 

(x) - ^F(x) 1 + ol = 1  . 

Since    G    is strictly increasing,    G    (y)    is continuous in   y , 

0 1 y 1 i  •    By Remark 1.3.1,    F  (x)  a^s' F(x)    uniformly in    x    and  (2.1) 

follows from the continuity of    G 

If the support of    G    is  finite, by Proposition 16, p.   16A, Royden  [15], 

G"  (y)    is uniformly continuous in    y  i 0 <^ y <^ 1  .     (2.2) now follows from 

Remark 1.3.1.   11 

The following lemma is any easy consequence of Proposition 6f.2(i), 

p.   355, Rao  [14] and the Glivenko-Cantelli Theorem. 

Lemma 2.1: 

Let the support of F be an interval. 

(2.3) If the support of F is not bounded, then 

p[|F^l(y) - F_1(y)| +0-1 

(2.4) If the support of    F    is bounded, then 

for 0 < y < 1 

sup  IF'V) - F'1(y)| -> ol- 1 
0<y<l  n j 

We give below conditions for the strong uniform convergence of * (y) 
F 
n 

to *r(y) . Weak consistency of 4 . is shown in Theorem (2.3) under less 
F F n 

stringent assumptions on the grid 
MA-C 



10 

The following theorem is due to Barlow and van Zwet [1], 

Theorem 2.2; 

Let conditions (2.Al), (2.A2) and either (2.A3) or (2.A4) and (2.A5) 

be satisfied. 

(2.Al) The support of F is an interval. 

(2.A2) Either F H F  or the grid iw.  I    becomes dense w.p.l. on n   n \  i,n^0 

w 
(-o^oo) an(i  «— <^ M w.p.l. V i , for some M < » . 

Wl-l,n 

(2.A3) F"1«)) > -« and F"1(l) < » . 

(2.AA) F'1^) > -« , F"1(l) - » , /  xdF(x) < " , /  g[G"1F(x)]dx < * 
Sl Sl 

(2.A5) gG (•) has a continuous derivative ty    on [0,1] . 

Then 

(2.5) [sup  |* A(y) - * (y)| ->, o] - 1 o^i Fn J 

Theorem 2.3; 

Let the following conditions be satisfied. 

(2.A6) G(x) has a continuous derivative g(x) in the interior of its 

support. 

(2.A7)    The support of    F   is a finite Interval. 

(2.A8)    The probability that  the grid    |w       \ becomes dense on    [s-.s,] 
\  l,n/i-0 i    2 

approaches    1    as    n ->■ «  . 



11 

Then,   for any    t  > 0 

(2.6) Um pfl* A(y)  - *F(y)|   < el - 1 0 <. y < 1 
n->oo 

Proof; 

u-1 
Fn    V T'hv) 

*  *(y)  - *F(y)  =    j 8 G'VCvOJdu -     f g[G'1F(u)]du  . 
F 

81 8;L 

Expanding in Taylor's series  about    F    (y)   , 

*(y) - <tF(y) •  IF*    (y) - F"1(y)Jg[G'1F(xn) (2.7) * 
F 

where x  lies between F  (y) and F  (y) 
n n  ^ ' 

*"1      -1   , 
Fn  (y) - F  (y)| < |wi+1|n - wi>n| 

+ iF'^y) - F'^y) 

^ 0 , by (2.A8) and Lemna 2.1. 

This proves the theorem. || 

3.  A Consistency Condition 

We give below a strong consistency condition for the estimator of the 

change point of an arbitrary function * defined on some interval  [a,b] , 



12 

Let  6 be the change point of f(x) , I.e., 6 minimizes V(x) , 

A 

and    Y  (x)     estimates    ^(x)   .    6      minimizes    4*  (x)    among all 
n n n 

x c n n" {^-"Lo * 

Theorem 3.1: 

Assumptions; 

J.A1)     *   (x)  a*S'  ^(x)     uniformly in    x t  [a,b]   . 
n 

(3.A2)     9   ,   assumed unique, minimizes    VCx)   . 

(3.A3)    9      minimizes    *  (x)    where    x    is confined to    Ü    . 
an n 

(3.A4)    Ü       is a grid on    [a,b]    such that w.p.l.  it becomes dense in some 

neighborhood of    9  . 

(3.A5)    For all    6    small enough    a(6)  > 0    where 

a  (6)  « a2(ö)  - a1(6) 

a.Cfi) « max {y(*)   :   9-6<_x<_9 + 6} 

a2(6) - min {"^(x)   : a < x <_ 9 - 25 , 9 + 25 £ x < b}   . 

Then 

(3.1) e   a±3' e n 

Proof: 

For    6    arbitrary, but fixed,  choose    e • a(5)/2   .    Then 

3 n    s n (e)    >    for all    n > n o        o o 

f  (x)  - ¥(x)|   < c V  x  . n 
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By (3.A4), w.p.l.    3   n.  >n     >    for all   n > n.   ,  |w.        - e|   < 6    foi 
X   ~"     O X K   ill n 

some    k    .    For    a<x<e-26    or    e+26<x<b, and    n > n, n — — ' 1 

\™ - V(\^ ' 'M - *(\.n) " 2e 

>.a2(6) - a1(6)  - 2e 

a(6) - 2e 

0  . 

But    6     minimizes    4f  (x)   => ^(e, ) - ¥_/«,.    _\ 1 0 .    Hence F (e   ) - 4-   /u.       \  < 0 
n\ n/       nl kn,nl - 

e-26<9    <9+26.     Since    5    may be arbitrarily small,  it  follows 

that 

6   a-^s• 6 . n 

Remark 3.1: 

It is obvious that a corresponding result can be proved when the 

change point is defined to be the maximizing point of Y . 

Remark 3.2; 

Let fl  be a grid determined by the order statistics from the under- 
n 

lying distribution F ;  aj,  =» X. where X.  is the ith order statistic J i,n   i        i 

from F .  If F is strictly increasing in a neighborhood of 6 , then 

Ü      becomes dense w.p.l. around 9 . 
n 



u 

4.     Some Theorems on the Weak Conversence of Probability Measures 

We give below some known results on weak convergence In the space of 

functions with at most discontinuities of the  first kind. 

4.1 Weak Convergence in    D[a.b] 

Let    C[a,b]    denote the space of continuous functions on [a,b] and D[a,b] 

denote the space of functions on     [a,b]    that are right-continuous and have 

a left-hand limit.    We Induce convergence in    D[a,b]    by Skorokhod's 

J.-topology.     It is well known that    C[a,b]    with  the supremum norm topology 

is a closed subset of    D[a,b]    with J.-topology. 

A sequence of stochastic processes    X     with trajectories in    D[a,b]    a.s 

is said to converge in distribution to another process    X    with trajectories 

in    D[a,b]    a.s.  if the measures    v      induced by    X      on    D[a,b]    converge 

weakly to the measure    v    induced by   X    on    D[a,b]   . 

Weak, convergence in D(a,b] , when [a,b] is a compact interval, is 

given in detail in Billlngsley [3]. Following Stone [17], we extend this 

concept to    D (-'*>,<-)   . 

* 
4.2 Weak Convergence in D (-0°.°o) 

Let R be a complete, separable, metric space, with metric p . We 

* 
denote by D (-a,,0O)  the space of all R-valued functions x(t) , -« < t < * , 

which have a limit from the left and are continuous from the right. Define 

on D  the topology J. : a sequence x (t) is said to be J.-convergent 

to x(t) if there exists a sequence of continuous one-to-one mappings 

X (t) of the interval (-00,OD) onto itself such that for each N > 0 
n 

sup \\   (t) - tl ♦ 0 and   sup o(x (t),x(X (t))) -•■ 0 as n ■* <*>  .    Note 
-N<t^N  " -N<t<N   n      n 

that for continuous x(t) , x (t)  converges to x(t)  in the J.-topology if 

and only if for each N > 0 
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sup   p(x (t),x(t)) -* 0 as    n 
-N<t<N        n 

A stochastic process    W    on    (-00,00)    is said to be a two-sided Wiener- 

L6vy proaese  if It Is a Gaussian process with stationary independent increments 

with (i)    W(0)  - 0     (ii)    E[W(t)] - 0    for     |t|   < »    (iii)    Var  [W(t)] -  |t|   . 

Further,  from the law of iterated logarithm for a Wiener process, 

W(t)  e C i-CD
t
eo)    v.p.l., where    C (-00,00)    is the space of all continuous 

function on    (-00,00)    and hence, in particular,    W(t) e D (-00,00)   . 

From Stone  [17]  and problem 1,   §15, Billingsley [3], we get necessary 

and sufficient conditions for the weak convergence of a sequence of random 

variables    X   (t)     to    X(t)   . n 

Theorem 4.1; 

The sequence    X (t)    is weakly convergent to    X(t)    if and only if 

(4.1) the finite dimensional distributions of   X  (t)    converge weakly to 

the finite dimensional distributions of    X(t)    as    n ->■ oo    for    t    in 

some set everywhere dense on    (-00,00)   ; and 

(4.2) for    e  > 0    and    N > 0 

11m PI sup min  [p(X  (t.) ,X(t))   ; p(X (t) ,X(0) ]   > e) - 0  . I n    i      n n n    z 
tr^»    )t-c<t1<t9<t+c 

J  -Nlt1<t2<N 

Further, If almost all the paths of X(t) are continuous, then (4.2) may 

be replaced by the following simpler condition: 

(4.3)   11m  P|       sup        p(Xn(t1),Xn(tJ) > e - 0 . ' • n i  n z     > 
n-H»;c-K)  111-^21-0?"^! <t2-N 

(4.2) is the condition for the sequence of probability measures {? } 

corresponding to {X } to be relatively compact (Cf. Billingsley [3]) 
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(A.2) is equivalent to the following two conditions, either of which may be 

used to verify relative compactness of {P } . 

(4.4)  Condition;  [Theorem 15.6, Billingsley [3]] 

For each N > 0 , 

;||xn(t) - xn(t1)|
Y|xn(t2) - xn(t)|

Y| <_ [B(t2) - BO^)] 2a 

for    -N ^ tj< t ^ t-    and    n >^ 1   where    y >_ 0   ,  a > h    and    B    is a non- 

decreasing continuous  function on    (-a5,00)   . 

(4.5)     Condition;     [Theorem 2.5.4, Rao  [13]] 

For each    N > 0   ,  there exist constants    YN >  0  ,  C    > 0    independent 

of    n    such that  for every    t,   .   t. e   [-N,N] 

4v^ - vvi'i i SÄ - ^l2 +'^I'I - ^ 
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CHAPTER III 

FIXED WINDOW ESTIMATORS BASED ON THE  <t» TRANSFORxMATION 

1. The Estimator x 
 a 

In this chapter, we shall be concerned with fixed window estimators 

using the $  transformation and "a" is the fixed window.  Recall that 

*F(x) = G'1F(x) . 

r(x)  = £ 4  (x)  - f<X> . 
dX    F gtG^FCx)] 

(J (x + a)  - <j>F(x - a) 
Hence     1    approximates     r(x)   .    Define    Ü      as  in Chapter I; za n ' 

i.e.,   let    -'*> < un      < cj.       <...<(i).       <   ...  < ^    be a subdivision of 0,n        l,n i,n 

(-00,00)    anci    n    = n " {"I..},. 

Definition; 

The pseudo change point of    r(x)     is given by    x     ,  assumed unique, 

minimizing     [4>p(x + a)  - ^(x - a) ]   . 

x     ,  estimating    x     , minimizes 
3 3. 

rv(x+ 
a)  - 0 ^(x - a) 

F 
n 

where    x    is  restricted to    Ü 
n 

2.    Consistency 

When the support of    G     (an interval)   is  finite, we show  in Theorem 2.1 

that    x      is  a strongly consistent estimator of    x     .    When  the  support of 

G    is  infinite,   it  is  shown  in Theorem  2.2   that    x      converges   to    x       in 
a ö a 

probability. 
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Theorem 2.1: 

Let the following assumptions be satisfied. 

(2.Al)    The support of    G    is a bounded interval. 

(2.A2)    Q     becomes dense w.p.l.  in the neighborhood of    x 
n a 

(2.A3)    For all    6 small enough,    a(5)  > 0    where 

a (5) - a2(6)  - ^(6) 

0.(5)  ■ max <i>_(x + a)  - (>  (x -a):x    -6<x<x    +6 
1 

|$F(x + a)  - (^(x -a):xa-6<^x<^xa+6| 

0,(6)  ■ min {♦pU + a) - <)>  (x - a)   :  s.   < x  <^ x    - 26,x    + 26  <^ x <  s   i . 

Then 

(2.1) 

Proof; 

A  S From Theorem II.2.1,     $ ^(x)    •*  '  $  (x)     uniformly in    x  .     In Theorem 
F n 

II.3.1, make Che following Identification: 

e - x   , e   - x an       a 

nx) - *P(x + a) - *_(x - a)   , f  (x) - ^ A(x + a)  - « ^(x - a)   . 
F F n F" F* 

n n 

AS II From Theorem II.3.1,    x      ■♦'x    . 
a a      ' ' 

Remark 2.1; 

When    G    is  the uniform distribution on     [0,1]   ,  r(x) « f(x)    and we 

get a stronger version of Theorem 1,  Section 5, Chernoff [5]. 
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Convergence of    x      When  the Support of    G    is Not Finite, 

Assumptions; 

(2.A4)     ["fr-Cx + a) - ♦_(x -a))     is  continuous at    x 

(2.A5)     The support of    G    is an interval. 

(2.A6)    The  probability  that  the set    Ü     becones dense on the support of 

F    approaches     1    as    n -•■ ^  . 

Lemma 2.1: 

(2.2)       min     U ^(x + a 
XEQ F 

n  L   n 

) - ♦ *(x - a) ^FK + a) -  *F(Xa " a) 

Proof: 

From Theorem II.2.1,    $ ^(x)  ■* ♦-(x)     for each    x   . 

min 
XEQ 

tt" »(x + a) - ♦ A(x -  a)l  ■* min U ^(x + 
F F I x        F 
n n | n 

a)   - (^  ^(x -  a) ] by  (2.A6) 

-► min [$F(x + a) - ^pCx - a)] 
x 

since 

(i )       [^ #(x + a)  - ^(x - a)l ^ [^  (x + 

LFa Fn J ' 
a)  - $   (x - a)]     for all    x  ,   and 

(ii)     [(|i_(x + a)  -  !$_(x - a)]     is  continuous at    x      by   (2.A4), the  last 
Ft a 

step follows  from Corollary 1 to Theorem 5.1,  Blllingsley  [3].   j] 

Theorem 2.2; 

Under Assumptions   (2.A4)  -   (2.A6), 

(2.3) x    -♦ x a        a 
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Proof: 

From problem 40,  p.  180, Royden  [15]  and by  (II.2.1),       ^   ,      converges 
F 

continuously to    $      w.p.l.    Hence for sequence    {x } -► x  , n 

f^    (x    + a) -  (^ ^(x    - a)l converges continuously to    [^„(x + a) - ()>  (x - a)] 
F F 

w.p.l.    The function    $  .    and    $      are measurable mappings  from    R    to    R 
F* F 

n 

Hence by Theorem 5.5,  Billingsley [3],   letting 

h  (x)  - (^ ^(x + a)  - * A(x - a) 
F F n n 

h(x) - *F(x + a)  - (>F(x - a) 

we get by Lemma 2.1 

h   min fc 
n  XCÜ 

n . 
F 
n 

a) - 
Fn 

i. 
* P - 

e., x -•• x 
a   a 

• 

3. Asymptotic Distrib utior i 

As sumptions: 

x - a)"! K h-1 / 'rain [({>F(x + a)  -  *F(x -a)] 

(3.Al)    F(x)    is  continuous with density    f(x)   . 

(3.A2)    r(xa + a) > 0  ;  r(x    - a] > 0  . 

3 
(3.A3) g,(x)/g (x)  is bounded for x in the support of G  (an interval), 

(3.A4)  [(>_(x + a) - i)_(x - a)] is differentiable at x . 
r F a 

-1/3 
(3.A5) u...  - tu.  - o (n   )  (i.e., ß  is a narrow grid). 

i+i,n   i,n   p n 

It is easy to see that these assumptions, which are necessary in the 

derivation of the asymptotic distribution, are sufficient to insure 

consistency of x 
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Since x  minimizes  ["('T-.CX + a) - i{>_,(x -a)] , we have 
a r r 

(3.1) 

Let 

r(xa + a) = r(xa - a) . 

(3.2) h (x) 
n 

4.F (x + a) - *F (x - a) 
n n 

x      minimizes    h   (x)     and hence minimizes a n 

(3.3)      hn(x) - hj^) =  L    (x + a) - ^ (^ + a)] -  L (x - a) - *F (^ - a)] 
Ln n JLn n J 

■ Y    + u n 

where 

(3,4)  Yn' |[\<x + a)' \^+ a^" ^+ a)' 'F^a + a)j i 

lhn(X" ^  " \ta'a'l" ^ F(x - a) - *F (^ - ')] 

and 

(3.5)       u - UF(x + a)  -  ({>F(xa + a «F(x - a)   - $F(xa - a)l  . 

Let    o  = x - x    .    Note  that    x c n    .    Expanding  in Taylor's series, 

lFn(x ! a)  - fJ\ * a)      F(X + a)  " ¥(\ + a) 
G'lT U    + a r (x    + a) n\  a ' ■(^ + a)] G"lF(x    + ai 

|Fn(x-a)  -¥n(\- a) _ F(x-a)  < F^-a) 

4G'lFn(Xa " a)J Sfl*i\ - a). 
+ 0  (n"1«) 

P 
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i\ +a) ( r(x    + a 
[F^X + a)  - Fn(;a + a)] - [F(X + a)  - F(^ + a)] } 

" Tj^TTy |[Fn<« " a' " *n{\ - *)] - [^ - * - <\ - »)] j 

+ 0   (n'^ö) 
P 

(3.6)    Y (Xa + a) ..    /r.      r(Xa " a) v_,(«) - 
0      ^(^a + a)    nl tk - a)    n 

V .(6) + 0 (n"^) 
* P 

where 

(3.7)      Vnl(6)  -   [FJ^ + a + 6) - FJ^ + a)] - [F^ + a + 5) - F^ + a)] 

and 

(3.8)      V .(6) nz nta - * + 6)  - F
n(^a - a)] " [*(*a " a + 5) - F(;a " a)] 

Expanding    u    by Taylor's series,  the  first  term about    f x    + a)   ,   the 

second term about    (x    - a)    and noting that    r(x    + a) » rfx    - a)   . we 

see that 

(3.9) 

where 

(3.10) 

u - 4Y«
2
 + 0  (63) p 

Y.r'(ia+a)- r'(;a-a) 

O.ll) *.  h (x) 
n 

- h (;). 
IT  a/ 

'(«a * a) 

'(«a + ')  ■nl 

V_1(6) - 
r(xa ' a) 

^a - a)  ^ 

v_2(6) 

+ 4Y5
2
 + 0  (n'^S) 

P 
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(3.12) E[Vnl(6)]  = E[Vn2(6)]  -  0 

f(x   +a)l5| 
(3.13) Var  [Vn.(5)]   = 

ni n 
+ 0   (n-1^2) 

P 

(3.14) Var   [V  „(5)]   = 
nz 

f(x   -a)l6| 
-1    2 

+ 0  (n i»6  ) 
P 

The  correlation coefficient  between    V  .(6)     and     V  _(6)     is given by ni nz 

Cov  [Vnl(i),V ,(5)] 
ni nz 

O-iS) P,,  --5  - 0   (S). 
lZ       /Var   [V  ,(6)]-Var  [V  0(6)] P 

ni nz 

Since    x      minimizes    h   (x)   -h(x),5«x    -x      minimizes   (3.11) 
a n w   a ' a a 

Let 

(3.16) 6 - At 

(3.17) r - r(xa + a) - r(xa - a) 

(3.18) wn(t) 

Vnl(Xt) 

,(xa+a)    ^ £( 

-1" Then    t ■ X    5    minimizes 

(3.19)      Z  (t)  • W  (t)  + 
n n 

"H 
Xr 

"   \f(;a + a)      £(x    -a) P J 
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Choose X in (3.19) so that the coefficient of t  is one, i.e., 

" {*{*!+  a) + ^^a1" a)) 

'H 

X Y • 1 

vl/3 

(3.20)   .*. X 
|nY

2 [f(xa + a)  f(xa - 

-1/"   * \ From (3.19), t « \ (x - x 1 minimizes 

(3.21) Z (t) - W (t) + t2 + 0 (n"1/6t) . 
n     n p 

Reduction to a Problem in Stochastic Processes 

Lemma 3.1: 

W  (c)    is asymptotically normal with mean    0    and variance    |t|   ,  for 

all    t   . 

Proof; 

From (3.18) and (3.12), W (0) - 0 and E[W (t)] - 0 for all t . n n 
-1/3 Since    p  - - 0 (n       t) , V .(Xt)    and    V -(Xt)    are asymptotically uncorrelated. 

.'. Var (W (t)] -   |t| + 0  (n"1/3t)   . n p 

From DeMoivre-Laplace Theorem 

r1! (il'V"^"^'^')!'!) 
rS (i)'vn2at)Ss(o.f(;a..)|t|) 
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and since    V .(Xt)    and    V -(At)    are asymptotically uncorrelated,  we have 

Wn(t) 5 W(t)   -  N(0,|t|)   .   || 

Remark 3.1: 

After a tedious calculation,  it can be shown that for any collection 

of t    ,   t    <  t2 ^ ...  ,< t.     with    11   |   < °°    for    1 1 i 1 k  ,   the joint dis- 

tribution of     [W  (O.W   (t„),   .... W  (t. ) ]     converges  to  the multivariate 
n    i      n    z n    K 

normal distribution with mean    0    and variance-covariance matrix given by 

(öU^tj) min (ItJJtjD) 

where 

6(c,d) 

1 if c and d are of the same sign 

0 otherwise 

Wlc^  tae above results,  the main result of this section.  Theorem 3.2, 

can be proved by arguments Identical to those given in Sethuraman   [16], 

pp.   112-117.    We  shall give an alternate proof using Theorem II.4.1. 

Lemma 3.2; 

For each    M  >  0    and for all    -N .1 t.  .1 t- ^ N  ,  there exists  a constant 

CN > 0    independent of    n  ,  t.   ,   t-    such  that 

(3.22)      E|[Wn(r.2)  - Wn(t1)]4|1CN|t2 -  tj2 + o(l)|t2 - tj   . 

Proof: 

Let    c» ■ —:  ; c- ■ —:   ;  c.   » c. + c.  .    Then 
f(xa + a)  '     3      f(xa - a) J 
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i-h 
Vt)c(^Cl)      [c2Vnl(6)-C3Vn2<6)l   ' 

Let    til ^  • 

Wn(t2)  " W  ' (^ Cl)      {c2lVnl(62> " Vnl(6l)]  " c3[Vn2(62)  " Vn2(6l)]} 

444 
From the elementary inequality     (x + y)    <^ 8x    + 8y 

(3.23) E{tWn(t2)  - Wn(tl)l
4} <  Sc-VV^E^Ca^  - V^)]* 

+ ^W " Vn2(V]A} ' 

If f is the value of the density at the mode, we note, after expanding in 

Taylor's series, that 

F(xa+a+62). F(;a + a+61)1f.(62-51) 

F(;a-a+62)-F(;a-a+61)1f.(S2-61) . 

After a tedious calculation, we note that 

n2E{[Vni(62)  - Vni(61)l4} < 18f2(62 - SJ2 + % i*2 ' SJ  >    i = 1.2 

and hence 

(3.24) 8c-1V
2n2{cA

2E[Vnl(62)  - V^)]' + c43E[Vn2(62)  - V^)]'} 

lcN(t2- t^+^j (t2- t^ 

where 

CN- 144c-2f2(cA
+cA) > 

D - 8cJ2f(c^ + c^) > 0. 
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From (3.23)  and  (3.24) 

E{[Wn(t2) - Wn(t1)]4}< CN|t2 -  tj^ o(l)|t2 - t^   .   || 

By Remark 3.1 and Lemma 3.2,  conditions   (4.1)  and   (4.5)  of Theorem 

II.4.1 are satisfied for the sequence    (W (t)}    and hence 

W (t) 5 w(t) n 

t2 + 0 (n-1/6t) I t2  . 
P 

Hence by an application of Slutsky's Theorem [Cf. Cramer [6], p. 254], we 

get 

Theorem 3.1; 

2      —1/6 
The distribution of W (t) + t +0 (n~  t) converges to the distribu- 

n p 
2 

tion of W(t) + t  where W(t)  is a two-sided Wiener-Levy process with 

mean 0 , variance 1 per unit t and W(0) =0 . 

The Asymptotic Distribution of x 

Theorem 3.2; 

k-1/3 2/- 
|4r (x + a) 

(3.25) (—^ '- 
ny 

is asymptotically distributed as the value of t which minimizes the 

2 
stochastic process Z(t) - W(t) + t , where W(t)  is a two-sided Wiener- 

L^vy process with mean 0 and variance 1 per unit  t and W(0) - 0 . 

Proof; 

Let z(t) e C (-a,,00) and k(z)  be the value of t  that minimizes 

z(t) . 
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(i)   W(t) = 0[2|t| loglog It]]1*    as  |t[ ^ - (Cf. Chernoff [5]) and 

hence 

2   2 
W(t) + t = t . 

Therefore, k[Z(t)]  is bounded w.p.l, 

(ii)  Since the distribution of Z^t)  has a nonzero density on  (-gv0) 

for eac's  t , Z(t)  has a unique minimum w.p.l. 

(iii) Since all tV trajectories of W(t) are in C (-"j00) w.p.l., 

the subset in C C-™,00)  on which k is continuous has probability 

1 for the process Z(t) . 

From Corollary 1 to Theorem 5.1, Billingsley [3], we see that 

k[Z (t)] 2 k(Z(t)] . n 

Further, we need to impose the following restriction on im.     \ 

Defining 6. » uj.  - x , since t =« X 5 we have 0  i   i,n   a ' 

ti+1 - ti - A i = 0.1. 

p 
■* 0    uniformly in    i 

if 

-1/3 
w,.,  „ " w,-  „ " 0„(n       ) for    i = 0,1,2,  ... i+i.n i,n        p 

-If-        - \ 
Hence t » X (x - x | is asymptotically distributed as the random variable 

o 

which minimizes W(t) + t  . || 

Remark 3.2; 

Let i'    be the density of the random variable which minimizes Z(t) . 

Chernoff [5] proves that 
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Mt) = >sux(t
2.t)ux(t

2.-t) 

where UC*,*)  is the solution of the heat equation 

*SU  » -U 
XX     z 

subject to the boundary conditions (i)  U(x,z) = 1 for x ^ z  and 

(ii) U(x,z) -•• 0 as x. ->■<*> .    Here U  denotes the partial derivative of 

U(x,z) with respect to x . 

Remark 3.3: 

If u). .,  - w,  ■ en 
i+l,n   i,n 

-1/3 
, asymptotically one looks at the stochastic 

process Z(t)  only at certain fixed points  t. , with spacings given by 

'i+l - ^ 
Y2/3c 

L  \f(xa+a)  f(xa- )J 
1/3 i = 0,1, . 

and t- > -00 , is arbitrary. 

Remark 3.4: 

When G is the uniform distribution on  [0,1] , r(x) = f(x) and 

8f(x +a) 
11/3 

_  ny 

which is the same as Equation (3.10), Chernoff [5] 
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CHAPTER IV 

NARROW WINDOW  ESTIMATORS   BASED ON THE     $    TRANSFORMATION 

1.     The Estimator    x 
a 
 n 

Since (ji ^(x) ■♦ ' *,(x) , a natural estimator for r(x) is given by 
F 
n 

* Ä(x + a,,) - * . (x - a) 
F F      n 

(1.1) rn(x) S   D  
n za 

where a -♦•0 as n -► <» . We shall refer to 2a  as a narrow window, 
n n 

Definition; 

The change point x , assumed unique, minimizes r(x) . 

x  , the estimator of x , minimizes r (x) among all x e S' 
a o n n 
r 

2. Strong Consistency 

If in (II.1.1) 

J^   |y| ii 
KCy) - ' 

■o    |y| > 1 

we get 

.     F*(x + h) - F*(x - h) 
(2.1) f (x) 

nv ' 2h 

Let 5 > 0 and 
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<r(x)   :x    -6<^x<_x    +<S> a1 (6)  = max{r(x)   :x_-6<x<^x_ + ö 

a0(6)  = inin<r(x)   :s1<x<x    -26,x    +26<x<s„> 
2 ( l—o o — 2) 

a   (6)  = a1(ö)/a2(6)   . 

Theorem 2.1: 

Suppose  that  the  following assumptions hold. 

(2.Al)     F    has  a uniformly continuous density    f  . 

2 oo      -yna 
r n (2.A2)       I    e converges  for every positive    y 

n-1 

(2.A3)     Either     F    -:  F     or the grid    fvJ     T        i s  chosen such   that 

w...       - w,       = o(a ) i+l,n i,n n 

(2.A4)     The grid    ü      becomes dense w.p.l.   in a neighborhood of    x 

(2.A5)     For all     6     small enough,     a(6)   <  1   . 

Then 

(2.2) x      a-S-  x 
a o n 

Proof: 

The proof is similar to the proof of Theorem 1, Venter [18].  For ä 

arbitrary, but satisfying (2.A5), 3 n  9 for n > n  , IUJ.    - x I < 5 o ok,no n 
for some sequence  {k. } w.p.l., by (2.A4).  Let 

e - UJ. n   K ,n 

_1 * -1 * 
G F (x + a ) - G F (x - a ) 

.^ „.       u / \     n n n n (2.3)       hn(x) -a  
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Then 

h   (x) 
n 

F(x + a)-F(x-a) 
n n n n_ 

2a [O-\M] 

where 

F  (x - a )  < ß   (x)   < F  (x + a )   . n n    —   n        —   n n 

Since    a    -► 0   , by Remark 1.3.1,    6   (x)    -* '   F(x)    uniformly in    x 

h«(8n)   • n    n 

F(e    +a)-F(e    -a) 
n    n        n n    n        n 

2a   '    '" ' 
{^^n^n)] 

* * 
where    F(6    -a)<ß(9)<F(e    +a).    Choose    x 9 x < x    - 35    or 

nnn   —   nn—   nnn —   o 

x ^x   + 36   .    Then w.p.l.,   3  n.   >^ n      Independent of    x    such that  for all 

n > n. 

(2.4) F(x    -  5)   <  ß  (9  )   <  F(x    + &] 
\  o ' —   n    n    —    '   o ' 

and 

(2.5)      either    8  (x)   < F(x    -    6)    or    ß  (x)   >  F(x    + 25)   . n'—    \o ' n—    *o ' 

(2.6) 
hn(x) 

n    n 

F*(x + a )  - F*(x - a ) f 
n  n n_ n t _ 

F*(9    + a ) - F*(9    - a ) '   , 
n    n        n         n    n        n f 

F'^   (9 ) 
n    n U. . 

F    SU) n 

-1 F iS   (x) | 

l:\F'l2_{'i_)] 
n    n 

Assumptions   (2.Al),   (2.A2) and  (2.A3)  imply, by Theorem II.1.1 when 

* * 
F / F  and from Nadaraya [11] when F = F  , that 
n   n n   n 

(2.7) 

*         * 
F(x + a)-F(x-a) 
n n n n_ a.s. ,, N  n x   f(x) • 
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uniformly  in    x .    Hence w.p.l.,   3   n« ^ n.   ,   independent of    x  ,   ?   for 

any  two points    x.   ,  x      and    n >  n„ 

(2.8) 
F  (x. + a ) - F*(x-  - a  )       f n    1        n n    1        n 
 —     - — ■     ■       ■    — i... ■ ■   i     ■  ■     ■— ..i i ■■ m    ^ 

F*(x7 + a)  - F*(x9 - a )       f 
n    z        n n    Z        n 

 rf-     >      Qt 

.^w] 
(6) 

* * 
Choose    n    > n2    and let    9 = Ö ^   .     From (2.4) and   (2.5),   for    n ^n 

n 

(2.9) 
F"1ßt,(x) 

n 

F'1S (e) 
n 

a2(6) 

-a1(6)      a(6) w.p.l. 

Hence, from (2.6), (2.8) and (2.9), we see that 

h (x)   ,-. 

hie)      a(6)  1 

n 
w.p.l. 

Therefore    x        minimizes    h  (x)   => 
a n 
n 

h (x    Vh 
n
\an/    n 

(6)   <  1 

..x-36<x      <x+36 w.p.l. 
o a o r 

n 

Since    6    may be made arbitrarily small,  it follows  that 

a.s. 
x ■*       X     . 

a o 
n 

3.    Asymptotic Distributions 

Assumptions: 

(3.Al)    F(x)    has a uniformly continuous density    f(x)   . 

(3.A2)     r(xo| > 0    and    r(x)     is  thrice differentiable in a neighborhood of    x 
3 

(3.A3)    g,(x)/g  (x)    is bounded for    x    in the support of    G   . 

(3.A4)    a    « CTT*    for some    C > 0    and    1/8 < a  <  1/5  .    Note  that  (2.A2) 

requires    a    to be less than    4 
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-u).       «oxn /.i.e.,     fi      is .,n        itn        p n (3.A5)    u...       - w.       ■ o\n / , i.e.,     Q      is a wide grid.    Let i+l,n itn        p * *      n & 

ü      also satisfy  (2.A4). 

We shall see,   in the sequel,  that the bounds on    a    arise naturally and 

that similar results can be obtained for    0  < a <^ 1/8  .    Methods used in 

this section are similar to those in Section III.3 and hence proofs  arc 

given only at places where  they seem to be necessary.    Assumptions   (3.Al) - 

(3.A5)  insure strong consistency of    x 
n 

Since    x      minimizes    r(x)   , we have o 

(3.1) r'(io) - 0 . 

Let 

(3.2) h  (x) - ♦_ (x + a ) - *_  (x - a) n r n r n n n 

(3.3) Ya - j^(x + .n) - ^ + ajj -   [*F(x + an)  -  ^ + aj 

- {[v* ■ ^' **y*0'an)] ■ ^F(X
 ■ ^ ■ *

F{
*

0
 'an)- 

(3.4) a - [^(x + .n) - *¥(*o + aj] -   [^(x - an) - ^ - aj] 

and 

6»x-x     »XEfi o n 

x   minimizes h (x) and hence minimizes 
an 

h (x) - h (x ) - Y + u . 
n     nV o/   n 

Expanding in Taylor's series,    Y      as in Section III.3 and    u    about    x    , 

we see that 



35 

Y    = 
n 

—z—~ T!|F  (X + a )  - F (X    + a   )] -  |"F(X + a ) - F(X    + a   ) 1! 
r^U +a )ll|-n       n     nl 0    n J    ^        n        0    n J! 

» o        n'J 

11 -     r    i   .-1 T\\
F
  (* - a ) - F (X    - a   )1 -  [F(X - a )  - F(xrt - a   ) ] 

JG-MX    - a   )    Hn n n    0        n  J       L " 0 '   J) 
HG    F(Xo      "n- 

+ 0  (n  5'd) 
P 

(3.5)       Y    = —z9-  JF  (x + a  )   -  F  (x    + a   ) : -  ' F(x + a  )  - F(X     - a   ) ' 
il      _/      \ l|_ n n n'  o        n'j      L n \ o        n'J 

^)IL 

ll -    F (x - a  )  - F   (x    - a   )    + I F(X    - a   ) - F(X    - a   ) 

+ 0 In ^-6 + n    «a   «(T 
pv n 

(3.6) 

Therefore    6 

u « a r  . 
n    v o 

(x   )6    + 0  (n    «ö    + n'    6)   . 
v  o' p 

minimizes 

(»„) 
(3.7)       h  (x) ~ h (x   ) - -—-^'V  (6) + a r"(x  ]*>2 

a Q
V
  o'       ,/     \    n n    v  o' 

f(x0) 

+ 0  {n'^'S + n'^a -^ + 63a    + 5a3) 
p\ n n n' 

where 

(3.8)       Vii(6) -  > JI F  (x + a )  - F (x   + a   ) ' -  j F(x + a )  - F(X   + a  ) 1 
il n n n\ o       n/j      L n y o        n'JI 

It 
) 

- |LFa(« * V " Fn(Xo - an) i " W* " V  " F(*o " an)]{ 

Let 

(3.9) 6 ■ At 
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(3.10) 
-h Wn(t> - [f ^^o)]' \^  • 

Multiplying   (3.8) by    [— f{xo)] 
«.       -    T-JS f(x   ) 

;—   and noting that    a    ■ Cn      , we 

-i: see  that    t - X     6    minimizes 

(3.11)      Z  (t) - Wft) + f^- f(xrt)]",S.^4.X2r"(x  )cn-at2 

riXn) 

/ 2-4a 2-10a   \ 

+ 0 Xö1* + n'a + n   3   63 + n    3    6/ . 

Choose X  such that the coefficient of t  in (3.11) is one, i.e., 

$ 'M -»s f(x ) ,  - 
-^ A2r"(x jCn"0 - 1 . 

Hence 

(3.12)  A - Z^VZ'V173!« )^2/3(- )^'2/3(- )* 

Therefore ,  5 - O \n     t/ .  From (3. 11) and (3.12),  t - X 
% -"») 

minimizes 

(3.13) 2 (t) - Vit)  + t2 + 0 In  3 t/ 

From (3.10), 

(3.14) W (0) • 0 and E[W (t)] - 0     for all t 
n n 
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By a straightforward but  tedious calculation it can be shown that   (Cf.  Venter 

[18]) 

(3.15)      Cov {w
n(t),Wn(t*)> ^ !s{min(It|,2B) + min( 11*| ,2B)  - iiiin(|t - t*|,2B} 

where 

a 
(3.16) B - lim -p . 

In particular, 

(3.17) Var [Wn(t)] > min  (|t|,2B)   . 

Note that for o > 1/5 , B - 0 . 

Reduction to a Problem in Stochastic Processes 

Hence for each t , W (t) is asymptotically distributed as a normal 

random variable with mean 0 and variance given by (3.17). By arguments 

similar to those in Chapter III, we see that W (t) is asymptotically 

distributed as W(t) , a Gaussian process with mean 0 and covariance function 

given by (3.15) ar 1 for a > 1/8 , by a simple extension of Slutsky's Theorem 

for processes. 

z (t) 5 z(t) - w(t) + t2 . n 

The Asymptotic Distribution of    x 
     n 

Theorem 3.1; 

The random variable 
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l-2a 

(3.18)   2 1/3C2/3f 1/3KK2/3W'"2/3K)- 3 (x - «0) 

is asymptotically distributed as the variable t which minimizes 

Z(t) = W(t) + t2 where 

(i)   for a « 1/5 , W(t)  is a Gaussian process with W(0) = 0 , 

E[V/(t)] « 0 for all  t and covariance function given by the 

limit in (3.15); and 

(li)  for 1/8 < a < 1/5 , W(t)  is a two-sided Wiener-Levy process 

with W(0) =  0 , E[W(t)] ■ 0 for all  t and variance 1 per 

unit t . 

The grid    Q      has to satisfy  (3.A5), viz. 

(3.19) 

Proof: 

"itl.n- "l.n" V° '• 1'0•1, 

By virtue of preceding arguments, it is left to show that (3.19) has 

to be satisfied. Since t.... - t. ■  *—r '— , in order to look at all 

the points of the process Z(t) , asymptotically, we need 

u.   .  „-<*»<„■ o\n     / ; if oj. .  - u   - 0 \n     / , we look at l+xtn   l,n   p 1+J.,n   i,n   p 

(1). . .   - UJ 

Z(t)  only at certain fixed intervals given by lim  *—: •— and for a 
n-H» 

grid whose spaclngs are even wider,  lim P[t. .. - t  > M] * 1  V |M| < ^ . | | 
n-H» 

Remark 3.1: 

If    A - Cf(x   )    and    G     the uniform distribution on     [0,1]   , Theorem 3.1 
' o' 

yields Theorems  3a and 3b of Venter  [18]. 
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Remark 3.2; 

Theorem 3.1 could have been derived by the following intuitive approach 

using Theorem III.3.2. 

Since x   minimizes 
a n 

VX + an) - VX - an) 

2a n 
, it minimizes  r(x) as 

-1 n -♦■ " ; i.e., x  -»■ x . Expanding the terms in X   in Taylor's series 
n 

about x  , 
a n 

4r2(x + a ) v    n' 

1/3 

"(•(X-nj-tX-8"))2^"^^"'^ 
as defined in (III.3.20), we get noting that x  -* x 

a   o n 

-1 . ,.1/3^2/3.1/3/^^-2/3(^)^2/3^^ ' 3° ,-1  »-1/3 „2/3,1/3/- \ -2/3/" \ „2/3/- \  3 ri ^ n/ -2a,., X  ■ 2   «C  f  [x jr   [x )r   Ix )n   [1 + 0(n  )] 

> Normalizing constant for (x  - x | 
I an   0/ 

in Theorem 3.1. 



CHAPTER V 

FIXED WINDOW ESTIMATORS   BASED ON THE    $    TRANSFORMATION 

1.    The Estimator 
"b 

In this chapter, we shall be concerned with fixed window estimators 

using the  $ transformation and "2b" is a fixed window. 

F'V) F"1^) 
(1.1)   *F(y) - J     g[G"1F(u)]du = j -^- dF(u) 

(1.2) r(x) t  *F(y) ys,F(x) f(x) 

(1.3) 

Fn  (y) 

* *(y) 
/ 

G -"-F (u) n du . 

Definition; 

x, , assumed unique, is said to be the pseudo change point of r(x) 

if it maximizes  [* (F(x) + b) - * (F(x) - b)] . Let  yb = F^) . 

x,  is an estimator of x,  if it maximizes 

[* <I(F*(x) + b) - $ il((F*(x) - b)| among all x t Ü     . Then yb = ^n(\) 

n n 

estimates y, . 

'] 
Remark 1.1; 

Del »fine  the set    A    =» <F   (u.     )l .     Then,    y,      maximizes 
n      (  n     i,n fimQ 

Jb 

[I   . (y + b)  -   i  ^(y - b)|    among all    y e  A      and  let     u. be ,1 corresponding F„ F„       J 
* 

grid point such that y. <■ F (w.  ) .  Then x,  is defined to be u, 0 y •'b   n  k,n b k,n 
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Further,   if    F    is  continuous at    x.     and    fi      becomes dense w.p.l.   in a 

neighborhood of    x.    ,  it  is easy  to see  that    A       becomes dense  in a 

neighborhood of    y.    . 

2.     Consistency 

Theorem 2.1: 

Suppose  that   the   following  assumptions hold. 

(2.Al)     In the neighborhood of    x,    ,   F(x)     is  continuous  and    n       becomes 
b n 

dense w.p.l. 

(2.A2) The assumptions in Theorem II.2.2 hold; i.e., 

a s 
$ .(y)  ■+ ' $-(.y)    uniformly for  0 < y < 1 . 

F* F "      * 
n 

(2.A3)     For all     6     small enough,    a(5)   >  0    where 

a  (6)  =  0^(6)   - a2(6) 

(^(6)  = ran |$F(y + b)  - $F(y - b)   :  yb  - 5 1 y 1 yb + ^ 

a2(5)  = max |*F(y + b)  - *F(y - b)   :  0  < y ^ yb - 26   , 

yb + 26 £ y <  l|  . 

Then 

(2.1) y, a^-  y, 

From Lemma II.2.1 it follows that 

(2.2) xb ^
s- ;b 



Proof; 

By Remark  (1.1),     A       becomes dense w.p.l.   in the neighborhood of    y.    .     The 

theorem now follows  from Theorem 11.3.1 and Remark II.3.1.   || 

Theorem 2.2: 

Let the following assumptions be satisfied. 

p 
(2.A4)    The assumptions  in Theorem II.2.3    hold;     i.e.,       * x(y) "* *r,(y) 

F      
F 

for 0 ^ y ^ 1 . n 

(2.A5) The probability that Ü      becomes dense on  (-0°,a°) approaches 1 

as n -•• ^ . 

Then 

(2.3) ^l'^ 

Proof; 

By Theorem II.2.3,   (2.A4)   implies weak consistency of    * A  .     The  rest 
F 
n 

of  the proof is  similar  to  the   arguments    involved  in  proving Theorem III. 2.2 

3.     Asymptotic Distribution 

Assumptions: 

(3.Al)  Let (2.A4) hold. 

I 

(3.A2) For x in the interval F (yb -b) . F (yb + b) and in a 

-1/' , \ .     „-1; 
neighborhood of    F    (yj, " b)    an^    F    Wh + b)   ' 

(i) r(x) >   0     and  continuously differentiable,  and 

(ii)       f(x)     and     f'(x)/f3(x)     are bounded. 

Either  (2.A4)     (g(x)     is  continuous  in    x)   or   (i)  and  (ii)   imply 



(iii)  gG~1F(x)  is bounded. 
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(3.A3) w^.  - u,  = o (n~1/3) , i.e., ft 
i+l,n   i,n   p      '       n 

is a narrow grid. 

(3.Al) and (3.A3) guarantee consistency of x. . 

Since y.  maximizes [^„(y + b) - ^-(y - b)] we have 
D f F . 

(3.1) 
F'^b + b) *'x{y. - M 

(say) 

Let 

(3.2) hn(y) 
[*Fn(y + b)  - *F  (y - b) 

n 

y,     maximizes    h  (y)    among all    y e A      and hence maximizes 

(3.3)      h  (y)  - hj^) =   UY  (y + b)  -  *F  (y - b)1 - k (^ + b ) - *F (^ - b)] 
Ln n JL" n J 

Let 

(3.4) 6 - y - y. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

n1 - yb + b ; n2 - yb - b 

cl ' F"1(ni) ; ?2 ' F"1(n2) 

aj^ - [nrij^] ;  a2 -   [nn2] 

bj^ - [n(n1 + 6)]  ; b2 - [n(n2 + 5)] . 

X-.X-, ..., X  are the order statistics from F . 



Lemma  3.1: 

b,-l 

»•" *M-*AT)'1 ^if1» PCX...)  - F(X.)]  + 0   (n  16) 

Proof: 

b -1 

(3.10)      ,F (^) .  ,F (ll) =    V      gLG'Vnmx        -X) 
n nx     '      j=a1 

J J 

X ^ - X    - F"1F(X      )  - F"1F(X ) 

(3.11) 
F(X      ) -F(X ) f'(r  ) 

■    ' H^)   
1 - ^^V^ " F(V] 73^7 

where    ;    =  F"1(e   )     and    F(X ) ^9    1 F(X       ) . 

E{[F(XJ+1) - FCXj)]2} - (n ; ^ ; 2) - o(n-2) . 

Further,   the  fourth moment  of    [F(X       )  - F(X  )]     is given by 

E{[F(Xj+1)  -  FCXj)]4} -   (n,1)(n + 2Hn+3)(n + 4)  = ^ 

so  that    Var  {[F(xi+1)   "  F(X  )]2> -^0    as     n - »  .     Therefore 

(3.12) [FO^i)  " F(XJ]2 - 0   (n"2)   . 

-1 3 
By assumption,  g[G  (j/n)] , f'(s.)/f (C.)  are bounded for j e   [a.,b     -   1 

Therefore 

bl"1 £'(? ) 
(3.13)  h    I       [F(X.,1) - F(X.)]2  - 1  » 0 (n'2)-n5 = 0 (n"15) 

i-a,    J+1     J   f3(;,)   P P 
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Lemma 3.1 follows from (3.11), (3.12) and (3.13), 

Lemma 3.2: 

b,-l 

(3 
n* '    n^  '    j=a x J        / 

6+0 (n"'26) 'l7  r2 

2r2f(C1)     
P 

where i^ l    are Independent and exponentially distributed random variables 
1 Mi-i 

with mean ——rr    and r = r(C-) = r(C~) . 
n T JL i      i. 

Proof; 

F(X )  and F(x1+1) are respectively the jth and (j + l)th order 

statistic from the uniform distribution on [0,1] . Let S = [ Y . Then 
2       i-1    1 

F(X )  =  S*/5^! •     By Strong Law of Large Numbers,    Sn+1 
a±S'   1 .    From  (3.9) 

«.is)    ^ytj - *Fjt; - 4i_ —^^ YJ+1 + o^n-1« 

■•i-1    -i        / \ 
i f(X)      \Y

1+1      „+l/ 

"l"1    ,.-1 
+; &I£7^^T-P^' 

j-a1 j 

Define Z,  by F(Z.) « F (X.) ■ j/n . By Kolmogorov's Theorem and the 

fact that  f is bounded away from zero, we have 

sup   |X - Z | =0 (n ^ • 

VJiV1 ■ p 
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f    CX4) = f ^z )  - ——L- (x    _ z ) 

2 
where     c       lies between    X.     and    Z     .     By Assumption  (3.A2),     f'UJ/f  (c.) 

Is  bounded  and  hence 

f'^X.)   =   {~liZ)  + 0   (n"S   . 
J J P 

b,- 

(3.16) 
f f(X.) \lj+l      n +  1/ '   / f(Z.) \Ij+l       n + 1/ 

j^^j^ j j=a1 j' 

+ 0   (n'h) . 
P 

u l7) T tv1^ -JL='r1 jfej. -J-+o („-^, U,i  '       / f(X.)        n + 1       .- f(Z.) n + 1        pU    ö;   ' 
J-a1 j j=a1 j 

Expanding  in  Taylor's  series,      yz   ,   =  ^     about    n,   ,  we  get 
rUj)       rlF-^j/n)] 1 

1 1 (j/n-  VlliV   ,     /i \ 
r(Z)   ^rCq)-      r2(,)f(.)    "        0ln-   l/ 

1'   v,l' 

Let 

A    * - 
n = n  4'      (Yj+1 -7TT    (j   " al3 

j=a1   ' ' 

E(A )  = 0 
n 

b.-l  ,, ,2 b.-l 
,     1      (j  - a ) 1 

n    j=a    (n+1) n    j=a 

1 3 -13 — (n-)    - o(n V) 
n 
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Therefore 

(3.19) A    « 0   (n'^-i372)   . n        p 

Note  that    r'UJ/r   (£)£(£,) Is bounded, by  (3.A2),  and that in  (3.16)  and 

(3.17),  the terms with     (j/n - n,)    raised to a power greater than    1    are 

of a still smaller order of    n . 

From  (3.15)  -   (3.17) 

/u v v       b -1 b -1 

?n\ n/      \\ n /      jfa    r(Z:j)   \Yj+l      n + l/ + ^    r(Zj) n + 

+ 0  (n'^S) 
P 

b -1 b,-l 

jta^V   ^+1      n + W      ^rU^nfl 

V1  (j/n-n^r'U  ) ^ 

n     J"al  r^v^v       p 

r
 i-a^^1     n+1/      r      2r2f(q) P 

Replacing subscripts    1    by    2    in Lenunas 3.1 and 3.2, we get 

Lemma 3.3: 

b2-l 

I »-. ^(^-^(^.iT^-^.f 
r,U2)       2 -h —-    - 6+0   (n ^6)   . 

2r2fU2) P 
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Remark 3.1; 

As    a -»• <» ,   [nyl/n ->■ y    uniformly in    y    and hence   finding    y,     maximizing 

h  (y)  - h  (y.)     is equivalent to  the problem of finding     6 ■ 6    which 

maximizes 

Reduction to a Problem in Stochastic Processes 

From Lemmas 3.2 and 3.3 

<■•■'> [•..(y-^]-Kfe)-M 
62 + 0  (n"^) 

P 

where 

(3.22) V (6) - V .(6) + V .(6) 
n ax n/ 

bj-l b2-l 

(3.23)    v^c«. I    (Vi " 7TT  • v„2(ä> * J    (-VI 
+
 ^T) 

Let 

(3.24) 6 - vt 

\ n /      n 
(3.25) Wn(t)  -  l^r)    V_(6) 

Then    t =* v    6    maximizes 
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(3.26)  Z^t) - Wn(t) - (f) .-^[^ - -^J. 2t2 + 0 (6^) 
P 

Choose v such that the coefficient of  (-t )  in (3.26) is one, i.e. 

/2vr* v2rr,<V  i^Vl 
\n/      2r2[f(C1) "    f(C2)J 1 . 

Therefore 

(3.27) 

n-1/3 
8r 

/r'^)      r'(C2)\2 

-1/3 *        -1/" ~  \ 
Hence    6 »« 0 (n        t)   .    Hence    t ■ v    wb ~ ^h'    maximizes 

(3.28) Zw(t)  - W  (t) - t2 + 0  (n"1/6t)   . n n p 

Lemma 3.4; 

W (c)  is asymptotically normal with mean 0 and variance  |t| , 

for all t . 

Proof: 

From (3.25). (3.22) and (3.23), W (0) - 0 and E[W (t) ] » 0 for all t . n n 

By the Lindberg-Ldvy Theorem  (Cf.  Fisz  [8],  p.   197) 

(^)\2ut,2N(o.M) 

Since    V . (Xt)     and    V -(Xt)    are asymptotically independent, we have 
nJL ni 
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W   (t) 5 N(0,|t|) for all    t 

Remark 3.2: 

For any collection of     t. ,   . ..,  t.    ,  it can be shown that the joint 

distribution of    (W  (t1),   ..., W  (t,)]    converges  to  the multivariate normal 

distribution vd-th mean    0    and variance-covariance matrix given by 

(6(ti,tj)min(|ti|,|tj|)) 

where 

il    if    c     and    d    ace of the  same  sign 

0    otherwise. 

By limiting arguements  similar to Section III. 3 or Section 5,  Chapter  2, 

Rao   [13], we get 

Theorem 3.1; 

2 —1/6 
The distribution of    Z   (t)  = W  (t)  - t    + 0  (n        t)   converges  to  the 

n n p 
2 

distribution of    W(t) -   t      where    W(t)    is a two-sided Wiener-Levy process 

with mean    0    and variance     1    per unit    t    and    W(0)   = 0   . 

The Asymptotic Distributions  of    y.     and    x. 

Theorem 3.2; 

The asymptotic distributions of 

(3.29) v"1^ - ^1 

(3.30) x'1{xb " \} 

have  density    ^(t)     where     ii     is   the  density of  the  value  of    t    maximizing 
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Z(t) - W(t:) - t     , W(t)    is a two-sided Wiener-L'evy process with    W(0) - 0  , 

ElW(t)] - 0    and    Var [W(t)] - It|   ,  for all    t   where 

-.1/3 
8r 

/r'C^)      r'(C2)\Z 

(3.31) 

•■{%) 

Proof; 

■"1/     \ 
Since t « v (y. - y.) maximizes Z (t) and by Theorem 3.1, 

» o   D ' n 

Z (t) " Z.(t) , we only have to show that the assumption on grid points, 

viz. ui.. _  - '.»,  ■ o (n   ) , is necessary. 
i+i.,n   x,n   p 

Since t - v" (y " yb) with y e An , 

n jTi.n n l.n 

1 0 if Vl.n " wi.n " 0p(n"1/3) ' 

Proof of C3.30) and (3.31) 

^b-yb" FnK) -¥i\) 

f*i\)  " F(*b) + (\ ' '*h)H0 

where c lies between x.  and x. 

•*• (^b-^)^) ■ (^b -yb)
+Vn'h) • 

p " 
by Kolmogorov's Theorem. Since, x, ->■ x.  and f(x) is continuous at 



s:: 

^  .   f(C)  *  f(xb)    by Corollary  2 to Theorem 5.1, Bllllngsley (3).    Hence, 

by Slutwky's Theorera  (Cf.  Cromer   (6), p.  254), we get 

v'^WK - s)s s1* ■ 

Let     A  -  \i/f|K. I    and  the  theorem  follows.   || 

An Alternate Definition of the Pscudo Change Point 

The pseudo change point may be alternately defined as 

*      F-1(^fb)+F-1(yb - b) 
x, r     where    y,     maximizes     J   (y + b)  - $  (y - b) 

Then 

Let A  be any  set In [0,1] and containing the points 0 and 1 

x, ■ F  (Yu) is said to estimate x.  when y,  maximizes 

f* A(y + b)   - ♦ ^(y - b)l   , 
LFo *n J 

where    y    is restricted  to    A 
n 

Under regularity conditions similar to those in Section 2,  it can be 

shown  that     y.     and    x.     are  consistent estimator of    y.      and    x.     respect- 

ively.     Further, it can be shown that 

[^Ta^ + Top")   ^K-O 

has density     iiit)    where    v    and    ty    are defined in Theorem  3.2. 

Remark  3.3; 

F%h + b) + F"1^ -b)      , 
If    b    satisfies  ■ x      and 

i a 

r~l(;b + b)   - F'l(yb  - b) 
a ■  = ,  wliere    a    and    x      are as  defined  in Chapter z      ■ a 

-* 
III, then it is clear that  x   and x^ are asymptotically equivalent. 
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CHAPTER VI 

MARBOW WINDOW ESTIMATORS BASED ON THE    «    TRANSFORMATION 

1.    Tht Estimator    x. 
       P 

A natural window estimator of    l/r(x)   , using ehe    ^    trans format ion is 

given by 

♦..«<->+ "J-♦..('>>-•>„) 
<1-X> "V^" '      ^ 

D 

where    2b      Is m narrow window. 
0 

Definition; 

x  Is said to be the change point If It maximizes l/r(x) . Let 

y«," F(xo) • 
* 

x.       Is said to estimate    x      if It maximizes    1/r (x)    among    x t il    . o o n n n 

Let    y.     - F*|x.     |   and    A    - /F*(ü).     )1* bn       nlX/ n     < n   1*n (l-O 
We shall obtain the analog of the results in Chapter IV and this will 

A A 

enable us to obtain the asymptotic efficiency of   x        relative to    x.      . 
an n 

2. Strong Consistency 

Let 6 > 0 and 

x    -6<x<x    +6 
o -     —   o 

ai(6) - "^ {TOO 
! 

o-(6) • max {   , i   : s.  < x < x    - 26   , x   + 26 < x < s, z. (rix/        i—o o — t 

a (6) - a1(6)/o2(6)  . 



V. 

Theorem 2.1; 

If 

A / too 
(2.Al)    either    F    ^  F      or the grid    Jv.     i becomes dense w.n.l. on the 

w^.,     - w.    I    '•• ' o ; 
. l+i,n l.n 

(2.A2)     ft      becomes dense  w.p.l.   In the nclghborliood of    x    ; 
n o 

(2.A3)    the support of    F    Is an Interval  and    F    has a uniformly continuous 

density    f  ;  and 

(2.A4)    for all    6    small  enough,    a(3)   >  1  , 

Chen 

(2.1) 
3 • S • ■ 3 • S • y,       ■*      y      and    x,       ■*■      x 'b 'o b o 

Proof: 

Let 

hn(y) 

* *(y + b ) - * *(y - b ) 
F 

n F 
n 

n n 
2b n 

♦-1 *-1 

F       (y + b)-F      (y-b)     r. n                 n          n                n       L-ia   /•  \  g G     S,   (y) 2b 
n 

where 

*-1 *-1 A"1 

K    (y - b„)  IF       (B  (y)) lFn     (y + b   )   . n    —    n        n 

i.e. , 

(2.2) 

Clearly, 

y-b     <ß(y)<v-fb } n —   n ^    - ' n 
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(2.3) ßn(y)  ■*■• y 

uniformly In    y  .    Lee    X.,  .... X      be Che order stacistics from    F .    Then, in 
S 1 

FOO "7    where    S.  ■    7    Y.    and    Y,,  .... Y    ,    are Independent random 
i      sn+1 

i     J-l   J ^ ^ 

variables and have exponential distribution with mean    l/(n + 1)   . 

♦-1 A"1 

F      (y + b  )  - F      (y - b )  - X-   , ...   v, - X,  ,    .   N1 + 0(w ) n    X7        n'        n     '        n' [nCy+b,,)]        (n(y-b )] n' n n 

* i i       * J where w - 0 when F = F  and w ■ sup w...  - w.  i when T   f f    . n n  n      n   ^ ' l+ltn   ijn
1       n  n 

By (2.Al), in the latter case, w a-V8' 0 . n 

\  Sn+1 
Fn (y + bn) - Fn (y - bn) - F '[—r^] -  F '[—T^-} + ^ 

S[n(y+bn)] ' S(n(y-bn)]    . 

 s-s '—r^—T + 0(wn
) 

S
n+1        f F Yn(y) 

where 

S[n(y-bn)]        
S[n(y+bn)] 

c  "  lYn(y) 1  s  
n 

SiH-l     n       Sn+1 

By proof along the lines of Venter [18], it can be shown that 

(2.4) Y (y) **" ' y      uniformly in y n 

and 

S[n(y+bn)] " 
S[n(y-bn)] a g 

(2.5)  2h  "*■ * ^      uniformly in y . 
n 
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By (2.A2), w.p.l.    3    n     »     for all    n >_ n    ,   3    an integer    k      satisfying 

L). - x      < 6    and for which      F kn.n       o' n(\.n) - y   I   < c    for some    E  > 0 .    For 

n ■ n    , define    x    - u. and    y    - F (x )   . o * o        k ,n 'o       n    o n 

  '        n      ' 

[Sln(y0+bn)l  " ^n(yo.bn)l]^7l^y+0<wn )     g 

G xß  (y) 

G ^n^o^ 

(2.6) 
hn(y) S[n(y+bn)] " S[n(y-bn)]        f(F   Y (y ))      t{?'\(y)) 
■    ■' ■ ■   m   ■ ,™  " ■     ■■ i ■ ■■— -■       ■■! ■ •    ■ ■! »■■ ■■■    •    ■ ■     ■■■■■■■ 

hn(yo)      Sln(yo+bn)] ' ^niy^)]      f(*'\(y))       t(*'\(yo)) 

,-1 {* W) 
i   -1 .     +  0(Wn)    ' 

r(F-\(y)) 

Choose    ;    >    y 1 F(X    - 36)    or    y >_ F(X    + 36)   .    From (2.3), w.p.l. 

3   n.^ n      independent of    y    >    for all    n ^ n.   , ß  (y) .1 Fix    - 25) 

or    6  (y)  > Fix    + 25)   .    Hence for all    n > n. n       —    v o ' •—   i 

(2.7) 
F"l8n^] , !2^> 

-a1(6)      a(6)   ' 

From (2.3), (2.4), (2.5) and uniform continuity of f(x)  ((2.A3)), w.p.l. 

3 n_ ^ n1 independent of y >  for all n >_ n- 

(2.8) 

S[n(y+bn)] ~ 
S[n(y-bn)] 

2b 

S(n(yo+bn)] -
S[n(yo.bn)] 

2b 
n 

< a(6) 

and, hence, from (2.6) - (2.8), 
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h (y) 
(2.9) iTTTJ < a(6) + 0(wn)  . 

If    v    ? 0  ,  I.e.,    F    / F    , w.p.l.    3   n» > n-    Independent of    y   > n n        n j ■"   « 

all    n >_ a. 

end from  (2.9) 

a(6) + 0(w )  < 1 n 

h (y) 
-S  < i 
h  (y )      ■L ' n 'o 

for 

h.. 
But    y.       Baxlmlzes    hn(y)  =>   -r-i—f-1 1 • Hence    F(XO - 36)   < yb    < F(X    + 36) 

n                                               n yo n 0 

w.p.l.     Since    5    is arbitrary,    y.       -*• * y .    By Lemma II.2.1    x.       ^ *  x    . |j 
n vy n 

3.    Asymptotic Distributions 

Assumptiona; 

(3.Al)    Conditions  (2.A2) and  (2.A3) hold. 

(3.A2)    In the neighborhood of    x 

(t)        r(x)    is thrice differentiable, and 

(ii)      f(x)/f3(x)    is bounded. 

Note that   min r(x)  > r(x   ) < «    Implies 

(iii)    gCG'^Cx)]  > 0  . 

(3.A3)    b    - An"0  ; A > 0  ,  1/8  < a < 1/5  . n "" 

O./VM    Ul+ltn - »^ - op\n / . 
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x^ minimizes  r(x) =■> r'lx ) " 0 . As in Section V.3, defi ne 

6  -  y  -  y 

n, ■ y   + b 1      'o       n ;  n2 " yo - bn 

h " r'1(nl) ;  C2 "  F'1(n2) 

aj - [onj ;  a2 •  [nn2] 

*>L - [n(n1 + 5)]  ; b2 -  [n(n2 + 6)] 

Lemma 3.1: 

'-> [^K(# [^Kö] ■ ^ (xo) b'a 

b1-i 

l      lYi+l " n + 1 / 

b2-l 

I    (-Vi + rTT) j-a. 

:"(x )b 
> o'  n 

r2(«J^(«J 

+ 0   (6b3 + 63b   ) 
p *    n n' 

where    iY. I are  independent and identically distributed, having the 

exponential distribution with mean    1/(n + 1)   . 

Proof: 

From Lemmas  V.3.2 and V.3.3 
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+ 0  (n'^d) 
P 

b,-l 

"->   ^) - xft) - Tct) ,1^ K«+ ^r)+ 4T " IT^ 

+ 0  (n'^ö)  . 
P 

From Taylor Series expansion 

(3.«>   ^T^ ^--^T-^ zrtll yn*°yj- 
r [F-a(;o±ba)j"r(;o)" r2(xo)f2(;o) 

The lemma is Immediate from Che above relations.   ! 

Reduction to a Problem In Stochastic Processes 

b^ b2-l 

Let.   Vn(6) -    I      (Y        - -^rj) +    I      (-Y        + ^jrj) .    Then 

-(X-y0) maximizes 

r(; ) " r2(x )f2(x ) P' 
62 + 0 (öb3 + ö3b   )   . p>    n n' 

—J    V (6)   .    Then    t - v    6    maximizes n /      n 

(3.5) z(t).»(t)-(^f'1;"(;°),-v2
t
2 + o(^.„^-^ + f^-*). 



W .n.J. .1.      .  .   .   ':,'...'!,S11JU .'..J.!..,1 1...           ' "'        ' I —^^—1^ 

^»0 

2 
Choose    v     such that  the coefficient  of     (-t  )     in  (3.5)   is  one,  i.e., 

/avf4  2 r"(xo)An"ot     , 

'W^k) 

Therefore 

(3.6, . - zl'V"'r4"(x )r2/3(x  )r--2»(x )n 
l-2a 

in 
o' 

Therefore,     6 « 0 \n t/ .    Hence    t * X    [y,     - y   )    maximizes 

2 (-^T1) - W  (t)  - t    + 0 \n       J   t/ (3.7) Zn(t) a n 

Lemma 3.2; 

W  (t)     is asymptotically normal with mean    0    and variance    min(|t|,2B)   , 
n 

for all    t    where 

b 
(3.8) B -  lim — . 

Proof; 

Note that    W  (0) =• 0    and    E[W  (t)] " 0    for all    t   .     By a straight- 
n n 

forward but  tedious calculation   (Cf.   Venter  [18]),  it can be  shown that 

(3.9)      Cov |wa(t),W (t*)} ■> H {min(|t|,2B: + min(|t - t* |)   - mia(|t - t   | ,2B) 

* 
In particular,   for    t » t     , 
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(3.10) Var [W (t) ]   - iain(| 11,2B) . 

Since all the conditions of Laranov Theorem, p.   203,  Fisss  [ft], are satisfied, 

the lemma follows,   j | 

Remark 3.1; 

The distribution of    W (n>     tr-nüs  Co a Gaussian process with mean    Ü 
n r 

and variance-  ariance function given by f3.9) and hence, by sn applicat-ion 

of Slutsky's Theorem, 

Z (t) 5 Zft) * W(t) - t2 

The Asymptotic Distribution o  y.   and x. 

Theorem 3.1: 

The random, variables 

-1/ (3.11) v v.     - v   1 
\bn        V 

(3.12) 

are asymptotically distribute., as the variable t which maximizes 

Z(t) - W(t) - c2 where 

(I) for a - 1/5 , W(t} is a Gaussian process with W(0) ■ 0 , 

E[W(t)] - 0 for a.l t and covariance function given by (3.9); and 

(II) for 1/8 < a < 1/5 , W(t) is a two-sided Wiener-L^vy process 

with W(0) - 0 , fc.[W(t)] "" 0 for all t and variance 1 per 

unit t . 



6? 

X «  v/f(x   ]    with    v     is defined  in  (3.6)  and    Ü      has  to  satisfy  (3.AA) x  o ■ n 

Proof; 

t -   t.  = * ' ► 0    for 
i+1 1 v 

u),,,       -  u).       -  a \n / .    Also,   for    a  <  1/5   ,  B = «>    and hence    W  (t) i+l,n i,n px ' ' ' n 

tends  to a two-sided  WIJ ,e    process  for     1/8  < a  <  1/5   .     t = "'l{\ - y°) 
meiximizcs    Z   (t)     atid ssiti: ?    Z   (t)  -♦ Z(t)   ,   (3.11)  is  immediate. n n 

Proof of (3.12): 

y.     - V    - F  (i,     ) - Fix 
b o        n».   D    /        ^  o 

^    n / 

(\H\)+(v'°)f(0 

where c lies betveer. x,   and x . There 
1) o 
n 

f0re    (X " Xo)f(0 

(\ - '*) 
+ 0  (n    )   , by Kolmogorov's Theorem,     x,       ■*■ ' x    =>   ^    •*■ ' x 

p ^ 

and the result follows 1'rom Slutsky's Theorem. | | 

Remark 3.2: 

For the special cast of estimation of the mode of a density, the above 

theorem reduces to rheorenis3a and 3b of Venter [18]. It is interesting to 

note that in all the fca»- estimators discussed, for the fixed (narrow) 

window, the grid is required to be narrow (wide). 

4. Asymptotic Fificic«-y of Narrow Window Estimators 

In this section, wr. obtain the asymptotic efficiency of x   relative to 
n 

Xb 
n 

Let    Z   (t)     avid    i   (t)    be  two consistent estimators of    Z(t)     such  that 
n i 
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(4.1) «^(V0 " Z(t)) 5HI(X) 

and 

(4.2) ^K^) - Z<t)) 2 H2(x) 

for some y  > 0 ,  where Hj , H« depend, in general, on Z(t) . 

Definition; 

Kolmogorov-Smimov distance 

(4.3) d[H1(x),H2(x)] -  sup  I^Cx) - H2(x)| . 
_aj<x<a> 

Followi  j Hodges and Lehmann [ 9 ], we define the  asymptotic efficiency 

* 
of Z (t)  and Z (t)  as follows: 

n n 

Definition: 

* 
The asymptotic efficiency of Z (t)  relative to Z (t)  is 

(4.4) e(z (t),Z*(t)) - a 
' n    n  ' 

where    a      satisfies o 

(4.5) inf d[H1(x),H2(x/o)] - dtH^x) ^(x/^) ] 
a 

In particular,  if    H1(x)  ■ H(a x)    and    H  (x)  » H(o2x)   ,   then it easily 

follows that 

a2 

(4.6) e(Zn(t),Z*(t))   - -| 
a1 
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/ *      \ If    e(Z   (t),Z   (t))  -  1   ,  the  two estimators are said to be asymptotically 

equivalent.     From Theorems  IV.3.1 and Theorem 3.1,  by definition (4.6), 

(4.7) 

Remark 4.1: 

'(vx)-(^r 
If we choose A = Cf(x ) + 0 (n Y)  for some y > 0  f it  can be easily 

seen that the two estimators are asymptotically equivalent for 

Y > 1 " 2a and 1/8 < a < 1/5 . 
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CHAPTER VII 

OTHER ESTIMATORS AND COMPUTATIONAL ASPECTS 

1.  Other Estimators 

1.1 The Naive Estimator 

f*(x) 
(1.1) ^(x) 

{G-VW 

F> + S )  - F*(x - a) 
i          n             n 

2an.g [o-VnM] 

is called the naive window estimator of    r(x)    and    x     minimizing    r  (x) n e      n 

estimates the change point    x 

Under the conditions of Theorem IV.2.1,  it  follows  from that  theorem 

that    x      is a strongly consistent estimator of    x    .    Furthermore,   if the n 0 ^ o 

assumptions  In Section  IV.3 are satisfied,  it can be shown, by a proof 

similar to the proof of Theorem IV.3.1,  that    x      and    x        have  the same r n a n 

asymptotic distribution,  i.e.,  they are asymptotically equivalent. 

1.2    A Family of Estimators of the Generalized Failure Rate Function 

and the Change Point 

To estimate the unknown generalized failure  rate function    r(x)   , 

consider statistics of the form: 

OD 

(i.2) ;tt(x)-■£ J ^^W*^ 

and 

OB 

r (x)        n   J^      \     n /    F
n 

at    x -  F      (y) n      ' 



bo 

where K(x)  Is a certain density function and a  , b  tend to 0 as 
n        n 

n -+■ o» .    When    G    is the uniform distribution on    [0,1]   ,   (1.2)  reduces to 

the statistic considered by Nadaraya  [11], Parzen  [12]  and others for 

estimating a density function and mode.    Note that when 

r lul   < 1 

(1.4) 

elsewhere 

we get the estimators considered  in Chapters IV and VI.    One can now define 

estimators of the change point with  respect to the smoothing function    K  . 

It would seem possible to obtain the analogue of the results of Nadaraya 

and Parzen to this more general case. 

1.3    Estimation of the U-Shaped Generalized Failure Rate  Function 

and  the Change Point 

Suppose we know, apriori,  that    r(x)    is U-shaped.     Using the approach 

of Barlow and van Zwet  [1,2],  estimators are suggested for the change point. 

In this subsection, we assume the  case of complete sample;   i.e.,    F    =  F    . 

Assume initially that    to.       <_ x    < u. .. for some    k   .    Let    r      be 

an Initial or basic estimator for    r    and    x      minimize    r     .    Consider the n n 

following regression of r  with respect the discrete measure u : 
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(1.5) 

rn(x,k) 

sup inf 
k+l>t>i+l s<i 

t-1 
I    r  (a). „)ii  {u.     } 
:s    n    j,n    n    j ,n -1^ 

t-1 
y u {ü)4 } 

A        n    j ,n 

inf 
8<k 

k 

JL      n    1 ,n j-s J, 

t-1 

i,n — i+l,n 

i - 0,1 k-1 

^n — 
^    K.n        k+l.n 

<  X   <  ' :: "— 

inf 

J"    r  (ü).    )vi  {OJ.     } 
1-k   n    J'n    n    J'n \.n + Vl.n 
t-1 

inf      sup 
t>i+l k<8<i 

t>k+l    ?        ,        s     r i - I    r (u   n)w„iw. „} 
j-k   n   J,n    n   J,n 

t-1 

I    r (w   _)un(u, _} 

t-1 

J-8     n     J'" 

i,n — i+l,n 

i - k+1,   ... 

Nott that    r  (x,k)     is a step function and decreases till    u. and 

increases after    ^-i       •    The following criteria,  for example, may be 

chosen to obtain the optimum value of    k , viz.    k    = k  (n)   . 

(i)      Choose    k - k      such that    k     minimizes 

■up  |rn(x.k) - rn(x) 

, v * * (ii)    Choose    k - k      such that    k     minimizes 

i-0 
n    i,n n    i,n 
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* llote that k is, in aeneral . not unique. While one could aocUfy the 

* definition to aake k unique, this will not be necessary, aince theae 

intervale typically all lie within a ranae which ia amall coapared to the 

* •ariability of k Then 

(1.6) eatiutea X 
0 

.. rlov and van Zvet auaaeat the follovin& baaic eatt.atora rn and 

cliacrete a~eaaurea ~ : 
n 

Ill < X < Ill i,n - i+l,n 

(1.7) 

Call tbe eattaator, obtained from aubatitutina (1.7) in (1.5), r (x,k) • 
n 

for the caae of coaplete a..,le, wi,n • Xi for all i , G aaaumed to be 

* the exponential cliatribution with .. an 1 and k choaen to maximize the 

likelihood of the a.aple, * r (x,k ) n ia the .... aa the maximum likelihood 

utiaator of a u-ahaped failure rate function conaidered by Bray, Crawford 

aad Proachan [4 }. 

r
8

(x) aa defined in (1.7) 

(1.1) 

aad aubatitutin& (1.1) in (1.5), we aet * rn(x,k) , the correapondin& 

".-oothed" eatiaator. 
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(1.9) 

G
'
1F
 (U.-M  > " G'1F (V*     ) 

r (x) B 1-fl.n n_ „i.n. < x < 

Vl,n " "i.n i'n "    i+1'n 

n i,n    i+l,n   i,n 

and r (x,k)  is obtained by substituting (1.9) in (1.5) 

Let I 
n 

k ,n k +l,n 
Based on the results of Barlow and van 

Zwet [2], we make the following 

Conjecture; 

If 

(1.A1)  x  is unique; 

(1.A2)  r is continuously differentiable and f" exists; 

(1.A3) r'U) < 0 for x < x  and r'(x) > 0 for x > x ; 
o o 

(l.AA)  r (x)  is a consistent estimator of r(x) ; and 
n 

(1.A5)  u..,   - to.  « en-0  0 < a < 1/3 and c > 0 , 
1+1,n   i,n 

then 

(1.10) lim PHX* - x I »t ol - 0 
n-H»  L      ■'     J 

(1.11)       lim P [sup^ |rn(x,k*) - rn(x)| *  o] 

Kn  l J 
V *        - 

where r (x,k)  is equal to r (x,k) or r (x,k) or r (x,k) . 

Analogous to the estimator based on total time on test measure given 

in Section 5, [2], we can define the following basic estimator and discrete 

measure: 
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!>i±l^ ' Fn(aii.n) / v    n 1+1 tn    n i,n    

n      '      n 

(1.12) 

n i,n    F  n l+i,n     r  n l,n 
n n 

Thus any one of the four basic estimators suggested above may be used 

to estimate r(x)  and x  . Mathematical analysis of such estimators of 

the change point, obtained from smoothing a basic estimator of r(x)  and 

based one of two criteria suggested above, seems intractable to obtain 

meaningful asymptotic results. Computational results are inconclusive to 

v 
suggest that any one criterion or any one version of r (x,k)  is superior 

to the rest. 

1.4 Estimation of the Change Point - The Case of Incomplete Data 

Items on test may possibly be of different ages. Further, an item 

may be removed from test by one of two ways - failure or truncation. Truncation 

is the action of summarily removing an item from test. Truncation times may 

or may not be known. 

In this case, the maximum likelihood estimator of F , when no assumptions 

are made concerning the distribution, has been obtained by Kaplan and 

Meier [10], This can be used to estimate the ^_ and *  transformations 
r r 

and hence  the change point. 

2.     Computational Aspects 

2.1    Recommendations 

We shall  restrict ourselves to  the strongly consistent estimators 

x        and    x,      ,  discussed  in Chapters  IV and VI  respectively.     In order to 
n n 
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correspond to the asymptotic theory developed earlier, the windows are 

required to satisfy the relations: a ■ Cn" , b ■ An" , where A , C 

l-2a 

and    a    are positive constants,    u.,,      - w. r i+l,n       i,n 
cn ,   for all    i    and 

c    a positive constant,   is a  convenient choice  for the grid    J2      and 
n 

ü)    is determined by the left end point of the support F . 

(1)  Choice of a 

The estimator r (x)  defined in Chapter IV is asymptotically the same 

as the basic estimator defined in (1.9). Barlow and van Zwet have shown 

that if r(x) is twice differentiable, the mean square error of the basic 

extimator is minimized for a ■ 1/5  (Cf. [2], p. 7).  Hence a « 1/5 is 

recommended.  For 

(\ * ;o) 

this choice of a, (x  -xl = 0(n   ) and 

V,-W) . 

(2) Choice of c : 

By Theorems IV.3.1 and VI.3.1,  fi  must satisfy the condition, 

U) - ü).  ■ o \n     / for all i . For a 
,n   i,n   px i+1 

the condition cj 

1/5 , this reduces to 

-1/5, - u.      ■ o  (n        )    for all    i  , which may be satisfied i+l,n        i,n        p ' 

In practice by choosing    c    less  than both    A    and    C   . 

(3)    Choice of    A   and    C   : 

The preference of one narrow window estimator over another as well as 

the "optimal" values of A and C depend on the particular distribution 

function, which is of course unknown. However on the basis of Monte Carlo 

simulations, some important conclusions are noteworthy for estimating the 

change point of probability density and failure rate functions. 
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(I) x   was noted to be sensitive to the choice of C for small 
a 
n 

samples (up to 3000). Improper choice of C could lead to 

estimates of x  and r(x )  well away from the true values. 

(ii) In contrast to the above, x^  and r jx  j were seen to be 
n       V n/ 

very good estimators if the criterion is to minimize the maximum 

error.  Furthermore, they were relatively insensitive to the 

choice of A . It should be noted that a check has been built 

into the computer program to reduce the value of A if it is 

found to be large. It has not been possible to include a 

corresponding check for C . 

A A 

Hence, though       x        and    x,       are strongly consistent  (under the assump- 
n n 

uions in Chapters IV and VI),  the estimator based on the    $    transformation 

is recommended for small samples. 

2.2    Numerical Results 

Monte Carlo simulations were conducted in the  following two  cases: 

(i)       change point  (mode)  of the    N(0,1)     density  (Table 2.1); 

(II) change point   (maximizing point)  of the failure rate of a parallel 

structure composed of two independent components having exponential 

failure distributions with mean lifetimes    4    and    1     (Table 2.2). 

In Tables  2.1 and 2.2,  for each sample size    n  , values computed from 

the    *    transformation are given below the corresponding values  from the    $ 

transformation.     These estimates are  the average of values obtained in 25 

simulations;   there was no significant variation in the results when the 

number of simulations was increased.     Estimates were obtained in both cases 

for a number of values of    A    and    C   .     In case   (i),    A    was chosen to make 
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the two estimators asymptot  call/ equivalent  (i.e.,    A = Cf(x  ))   .     Simula- 

tions were conducted in both cases for    u    ranging  from 50  to 3000.    Some 

typical results  are shown In the table'. 

Several numerical invei;-igations for estimating density and failure rate 

functions have been conducti d by War^on and Leadbetter  [19]  and  [20].    They 

obtained the best  results,     n  the t-aae of estimating a failure ratw  function, 

from a "heuristic graphical estimator"   (Cf.   [19],   p.   18Ü) .    To obtain this 

estimator,    -log  [1 - F   (x) ;     is plotted against    x    and   a smooth curve is 

drawn through the points by any reiuonable method.     The  slope of the curve 

at any point    x , say    r  (x^,   , estimates i:he failure rate at that point. 

Since    -log  [1 - F  (x)]     is  infinite for    x    equal  to the  last observation, 

no interpolation is possible between (n •• l)th and nth sample points.    The 

change point can now be est "mated by determining the point, say    x    ,   (nor. 
O 

necessarily unique) at which r (x) is minimum. This estimator, by its 

construction, does not come vlth formulae for its mean and variance. 

The computer program was also applied to actual life data on two types 

of very expensive radar  tube;;. The data was in the form of failure times of 

19 tubes of type 1 and 25  abes of type 2. In each case, the change point 

was also estimated graphically (Figure 2.1) and the resulcs are summarized 

in Tables 2.3 and 2.4. 

The numerical investig :ions were carried out on a CDC-6400 computer 

at the Computer Center, University of Calitomia, Dtrhcicy  The e/ecutlcn 

time for the case mentioned above was approximately 30 seconds for each 

tube type. 

Details of the computer program are given in the Appendix. 
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TABLE 2.1 

ESTIMATION OF THE MODE OF THE    N(0,1)     DENSITY 

F(x) „ _^ r e-t
2/2dt 

/27    J 

r(x)   -   f(x)  = — e 
>/27T 

2/9 •x  /2 

— 00     <     x     <     ^ 

— m   <    x    <    ^ 

x    = 0.0 
o 

r(x  ) = 0.398916 

Cf(xo)  ,   i.e.,     e/xa   ^   \ 
\    n       n/ \    n       n/ 

0-1/5 c = 1/4 

Number of Simulations = 25 

n C 

MEAN  VALUE 

X 
a 

OF         n 

Xb 
n 

MIAN SQUARE 

X 
a 

ERROR OF         n 

\ 
n 

MEAN  VALUE 

^ ) 
OF         V    "' 

MEAN SQUARE 

;/; \ nl   a    / 
ERROR OF                " 

50 

100 

250 

0.4 

0.4 

0.4 

-0.028814 
0.094659 

-0.013206 
0.082339 

-0.005406 
0.097342 

0.830221E-03 
0.896029E-02 

0.174405E-03 
0.677979E-02 

0.292295E-04 
0.947540E-02 

0.605723 
0.684200 

0.552615 
0.592910 

0.492992 
0.498336 

0.427688E-01 
0.813866E-01 

0.236233E-01 
Ü.376335E-01 

0.835025E-02 
0.98S418E-Ö2 

50 

100 

250 

2.8 

2.8 

2.8 

taMCTes ■■■ ea 

-0.037960 
0.066669 

0.034567 
0.030586 

-0.015350 
-0.0054Ü6 

0.144094E-02 
0.444469E-02 

0.119485E-02 
0.935476E-03 

0.235616E-03 
0.292295E-04 

0.320511 
0.267973 

0.341437 
0.289064 

0.356965 
0,3359 35 

0.614737E-02 
0.171463E-01 

0.3303S7E-02 
0.12Ü675E-01 

0.175995E-02 
0.396660E-02 
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TABLE 2.2 

ESTIMATION OF THE MAXIMIZING POINT OF    r(x) 
Jlxl 

1 - F(x) 

. -x        -2x  .     -3x 
1 - e      - e        + e 

F(x) 

r(x)  = 

x ^ 0 

otherwise 

f(x) 1 + 2e"X -  3e"2x 

1 - F(x) , J     -x        -2x 
1 + e      - e 

x    = 1.443635 o r(xo) « 1.105573 

a - 1/5 c - 1/4 

Number of Simulations = 25 

50 

100 

250 

8.6 

8.6 

8.6 

0.55 

0.55 

0.55 

MEAN VALUE 

x 
a 

OF    .  n 

 n 

0.187495 
1.166128 

0.74446O 
1.337640 

2.094735 
1.365555 

MEAN  SQUARE 

x 
a 

ERROR OF  . I 

"b 
JU 

0.157789E+01 
O.770105E-01 

0.488846E+00 
0.112350E-01 

0.423931E+00 
0.609655E-02 

MEAN VALUE 

0.338594 
1.261499 

0.668490 
1.236343 

0.941717 
1.196830 

MEAN SQUARE 

ERROR OF 
'<\) 

« 

0.588256E+OO 
0.243129E-01 

0.191042E+00 
0.171007E-01 

0.268488E-01 
0.832793E-02 

50 

100 

250 

9.6 

9.6 

9.6 

0.9 

0.9 

0.9 

0.077742 
1.015217 

0.418013 
1.086833 

1.822950 
1.166688 

0.186567E+01 
0.183542E+00 

0.105190E+01 
0.127308E+00 

0.143879E+00 
0.767000E-01 

0.214144 
1.080619 

0.574817 
1.099600 

0.848998 
1.109128 

0.794646E+00 
0.622694E-03 

0.281701E+00 
0.356783E-04 

0.658305E-01 
0.126385E-04 

Such a distribution describes the failure  law of a parallel structure 
composed of two independent components having exponential failure distributions 
with mean lifetimes    h    and    1   . 
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TABLE 2.3 

RADAR TUBE - TYPE 1 

Data 

1. n « 19 

2. Observed Failure Times in Hours 

533 
827 
877 

1007 
1271 
2394 
2741 
3244 
4130 
4368 
4744 
7253 
7705 
9482 
11813 
12317 
12563 
14977 
16713 

Estimates 
a » 1/5 c »  1/4 

Ä "   /*■    \ * */"      \ c x         in Hrs. a 
n r"(\) 

A x^       in Hrs. 
n 

r   (x, 
n\ b    /         I 

10 527.45 0.0 0.3 4130.01 0.102284E-03 

30 516.35 0.0 0.4 4368.08 0.111463E-03 

50 505.25 0.0 0.5 4368.08 0.115497E-03 

100 477.51 0.0 0.6 4368.08 0.132645E-03 

500 255.53 0.0          0.7 3244.04 0..1346 35E-0 3 

1000 1826.02 0.0 0.8 4130.01 0.15ÜO98E-O3   ' 

1500 5576.47 0.0 0.9 4368.08 0.15o34JE-03   , 

From Figure 2.1, 

x - 5750 Hrs, 
S 

h)'°- 250OOOE-O4 
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TABLE 2.4 

RADAR TUBE - TYPE 2 

Data 

1. n - 25 

2. Observed Failure Times in Hours 

44 
384 
548 
1172 
1373 
1527 
1611 
1614 
1634 
1873 
2249 
2892 
3100 
5160 
5468 
5531 
5809 
6631 
7368 
7511 
8611 

10847 
10920 
11546 
11567 

Estimates 
a - 1/5 c - 1/4 

c x   in Hrs. 
a 
n ;"(\) 

A x.   In Hrs. 
n <(\) 

10 38.75 0.0 0.3 3100.10 0.157882E-03 
30 28.24 0.0 0.4 5809.10 0.150124E-03 
50 70.40 0.0 0.5 1614.01 0.162450E-03 

100 96.66 0.0 0.6 1614.01 0.184687E-03 
500 810.68 0.0 0.7 3100.10 0.179432E-03 

1000 3625.40 0.0 0.8 2892.08 0.183676E-03 
1500 3880.05 0.0 0.9 3100.10 0.204013E-03 

From Figure 2.1, 

x - 4000 Hrs. 
g 

;.(i.) 
0.145833E-04 
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MCU0C 2.1 - GRAPHICAL ESTIMATION OF THE CHANCE POINT AND 
fAILURE RATE FOR TWO TYPES OF RAOAB TU8ES. 
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APPENDIX 

COMPUTER PROGRAM 

The  following program, written in FORTRAN IV,  computes    x        and 
n 

r [x  j , x,   and r /x, j , for probability density and failure rate 

functions, under the assumption of complete data. The program comprises of 

a main routine and four subroutines as follows. 

Main Routine 

CPOINT :  Controls the over-all computation and calculates the final 

results. A user has only to provide the input data specified 

by this routine. 

Subroutines 

ORSTAT 

EMP 

GINVF 

Sorts the failure times in ascending order. 

Computes the empirical distribution function. 

Computes the value of  (J)_ (x) at any specified point x . 
n 

GGINVF  :     Computes    g [^)] '° r    i • 0,1 n These values are 

necessary to calculate    $_ (x)   . 
r 
n 

A listing of the program is given on the following pages and, for each 

routine, the listing includes comments regarding the pertinent quantities 

used by that routine. 



J7186»7f50.5)ÜOOO,3O.7186»S, ARUNKUMAR »CHANGE POINT ESTIMATION 
RUN»S»i»»»»500üO, 
LGO. 
t 

PROGRAM   CP0INT(INPUT,OUTPUT) 
C 
C MAIN  ROUTINE   -   PROCESSES   THE   DATA   AND   OBTAINS   TWO 
C ESTIMATES   OF   THE   CHANGE   POINT   AND   THE   VALUE   OF   THE 
C GENEKALUED   FAILURE   KATE   FUNCTION   AT   THE   CHANGE   POINT, 
C 
C INPUT   REQUIRED   BY   THE   PROGRAM. 
C 
C N   =   NUMBER   OF   FAILURE   DATA. 
C NF   -  NF   IS   EUUAL   TO  ZERO   IF   R(X)    IS   A   PROBABILITY 
C DENSITY   FUNCTION  AND   EQUAL   TO  ONE   IF   R(X)    IS   A 
C FAILURE   RATE   FUNCTION. 
C NM   -  NM   IS   EQUAL   TO  ZERO   IF   THE   CHANGE   POINT   IS   THE 
C MINIMIZING   POINT   AND   EQUAL   TO   ONE   IF   IT   IS   THE 
C MAXIMIZING   POINT, 
C XZERO   =   LEFT   HAND  END  POINT   OF   THE   SUPPORT   OF   F. 
C N»NFtNM.XZERO   SHOULD   BE   INPUT   ACCORDING   TO   FORMAT    1000. 
C XtlJfl   «   1»N»   ARE   THE   N   FAILURE   TIMES.   THEY   SHOULD   BE 
C READ   IN   ACCORDING   TO   FORMAT   1010. 
C 
C OUTPUT   FROM   THE   PROGRAM. 
C 
C X(AN)   =   ESTIMATE   OF   THE  CHANGE   POINT   FROM   THE   LITTLE 
C PHI   TRANSFORMATION. 
C R(AN)   =   ESTIMATE   OF   THE   GENERALIZED   FAILURE   RATE 
C FUNCTION  AT   THE  CHANGE   POINT   FKoM   THE   LITTLE 
C PHI   TRANSFORMATION. 
C X(BN)   =   ESTIMATE   OF   THE  CHANGE   POINT   FROM   THE   CAPITAL 
C PHI   TRANSFORMATION. 
C R(BN)   =   ESTIMATE  OF   THE   GENERALIZED   FAILURE   RATE 
C FUNCTION   AT   THE  CHANGE   POINT   FROM   THE   CAPITAL 
C PHI   TRANSFORMATION, 
C 

COMMON   N,FN,NF,NM,GGINVO»GGINV(1000).IN»X(1000) 
C SPECIFY   AtALPHA.C   -  CONSTANT   FOR   WINDOW.CL   -   CONSTANT 
C FOR  GRID. 

A  »  0,5 
ALPHA   =   ^.2 
C »   10.0 
CL   =  0.25 
READ   lOOO.N.NF.NM,XZERO 

1000   FORMAT(I4.2I1»F20.10) 
READ   1010»(X(I ) »IslfN) 

lOlO   FORMATUF20.8) 
FN   =  N 
CALL  ORSTAT 

CALL  GGINVF 
1   GRID   =   FN*»(-ALPHA) 

AN   «   C»GRID 
BN   =   A»GRID 
GRID  =   CL»oRlD 
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IST1 = 1 
IST2 = 1 
IST3 = 1 
PEl = -X.o 
PE2 = -l.J 
PE '  '1,0 
P = X(1)-AN 
NCOUNT = 1 

10 WMIN = P-AN 
WMAX = P+AN 
IN = IST1 
CALL EMP(WMIN»E1) 
IST1 = IN 
IN = IST2 
CALL £MP(WMAX.E2) 
IF CPE1 .LT, EDGO TO 11 
IF CPE2 .EQ. E2)G0 TO 60 
GO TO 12 

11 CALL GINVF{E1.A1) 
12 IST2 = IN 

PEl = El 
PE2 = E2 
IF CE2 .LT. l.Ü)GO TO 20 
IF (NF .EQ. DGO TO 60 

20 CALL GINVF(E2»A2) 
OF = A2-A1 
IF INM .EQ. DGO TO 50 
IF JNCOUNT .EO. DGO TO 30 
IF (OF .GE. FRDGO TO 60 

30 FR1 » OF 
CP1 = P 
GO TO 60 

40 INDEX = 1 
GO TO 110 

50 IF INCOUNT .EQ. DGO TO 30 
IF IOF .LE. FRDGO TO 60 
GO TO 30 

60 IN = IST3 
CALL EMPIP.E» 
IF IPE .EQ. E)GO TO 110 
IST3 » IN 
PE » E 
MIN » FN*(E-BN) 
IF CMIN)4ü,7Ü.7ü 

70 MAX » FN»(E*8N)-1.0 
IF CMAX .GE. N)GO TO 110 
SUM « 0.0 
DO 90 I » MIN.MAX 
IF (I .GT. 0)GO TO 80 
SUM » SUM-t-GGINVO»(X(l)-XZER0) 
GO TQ 90 

80 SUM » SUM+GGINV(I)#(X( I + D-Xd)) 
90 CONTINUE 

OF « SUM 
IF INM .EQ. DGO TO 120 
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IF (NCOUNT .EQ. DGO TO 100 
IF (INDEX .EU. DGO TO 100 
IF (OF .LE. FR2)GO TO 110 

100 FR2 = OF 
CP2 » P 
INDEX = 0 

110 NCOUNT   »   NC0UNT>1 
111 IF   (E   .EO.   1.0)GO  TO   130 

P  »   P+GRIO 
IF   (E2   .EQ.   1.0)GO  TO  60 
GO   TO   10 

120   IF   (NCOUNT   .EQ.   DGO   TO   100 
IF   ( INDEX   .EQ.   DGO  TO   100 
IF   (OF   .GE.   FR2)G0  TO   110 
GO  TO   lOu 

130  FR1   =   FR1/(2.0»AN) 
IF   ( INDEX   .EQ.   DGO  TO   160 
IF   (FR2   .EQ.   ü,U)GO   TO   140 
FR2   =   (2.0*BN)/FR2 
GO  TO   150 

140   FR2   =   999999999.99999 
150  PRINT   1020,N.A.C.CPI»FR1.CP2,FR2 

1020  FÜRMATUX»*N   =*»I4»3X»#A   =» »F5.2 »3X»*C  =*.F5.1,3X. 
1»X(AN)   =*»E14.6»3X,*R(AN)   =»»EU.6»3X»*X(BN)   =*»E1^.6» 
23X.*R(BN)   **.EK.6) 

GO  TO   170 
160  A  =  A-0.Ü5 

IF (A .GT. 0.0)GO TO 1 
PRINT 103o»NfA.C»CPl»FRl 

1030 F0RMAT(4X»»N =#»U»3X»*A =»f F5.2 »3X»*C =*»F5.1»3X. 
1»X(AN) =»»E14.6»3X.»R(AN) =».EU.6f3X» 
2*DECREASE A BY A SMALLER AMOUNT IN STATEMENT 160«) 

170 STOP 
END 
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SUBROUTINE ORSTAT 
C 
C     SORTS THE FAILURE TIMES IN ASCENDING ORDER TO OBTAIN 
C     ORDER STATISTICS. 
C 

COMMON N»FN»NF»NM»GGINVOfGGlNV(1000)»INfX(1000) 
NN « N-l 

10 INO = 0 
DO 20 I = l.NN 
J = 1 + 1 
IF (Xm .LE. X(J))GO TO 20 
S • X(I) 
X(I) = X(J) 
X(J) = S 
IND = I 

20 CONTINUE 
NN ' IND-1 
IF (IND .GE, 2)GO TO 10 
RETURN 
END 

SUBROUTINE EMP(XX.FNX) 
C 
C     FNX = VALUE OF THE EMPIRICAL DISTRIBUTION FUNCTION AT 
C XX« 
C 

COMMON N»FN.NFtNMtGGINV0tGGINV(10OO)tINtXdOOO) 
00 10 I = iNtN 
IF (XX .LT. X(I))G0 TO 20 

10 CONTINUE 
FI « FN 
GO TO 40 

20 IF (I .GT. DGO TO 30 
FI « I 
FNX • 0.0 
GO TO 50 

30 FI « 1-1 
40 FNX » FI/FN 
50 IN ■ FI 

RETURN 
END 



A.6 

SUBROUTINE GINVF(Y.VALUE) 
C 
C     VALUE = GINVERSE FUNCTION COMPUTED AT Y, 
C 

COMMON N»FN»NF.NM»GGINV0»GGINV(1000).INfXdOOO) 
IF CNF .EO. DGO TO 10 
VALUE = Y 
GO TO 20 

10 VALUE = -ALOG(l.O-Y) 
20 RETURN 

END 

SUBROUTINE GGINVF 
C 
C     COMPUTES THE GGINVERSE FUNCTION. 
C 

COMMON N»FN»NF»NM.GGINVO»GGINV(1000)*IH*X{ 1000) 
• IF CNF .EO. DGO TO 20 
00 10 I »1»N 
GGINV(I) = 1.0 

10 CONTINUE 
GO TO 40 

20 DO 30 I = UN 
F = I 
GGINVIII = (FN-F)/FN 

30 CONTINUE 
<»J GGINVO = 1,0 

RETURN 
END 
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